ﻻ يوجد ملخص باللغة العربية
We study the quantum phase transition (QPT) in a non-Hermitian Tavis-Cummings (TC) model of experimentally accessible parameters, which is engineered with two drive fields applied to an ensemble of two-level systems (TLSs) and a cavity, respectively. When the two drive fields satisfy a given parameter-matching condition, the coupled cavity-TLS ensemble system can be described by an effective standard TC Hamiltonian in the rotating frame. In this ideal Hermitian case, the engineered TC model can exhibit the super-radiant QPT with spin conservation at an experimentally accessible critical coupling strength, but the QPT is, however, spoiled by the decoherence. We find that in this non-Hermitian case, the QPT can be recovered by introducing a gain in the cavity to balance the loss of the TLS ensemble. Also, the spin-conservation law is found to be violated due to the decoherence of the system. Our study offers an experimentally realizable approach to implementing QPT in the non-Hermitian TC model.
Considering the dipole-dipole coupling intensity between two atoms and the field in the Fock state, the entanglement dynamics between two atoms that are initially entangled in the system of two two-level atoms coupled to a single mode cavity in the p
We study the adiabatic limit for the sequential passage of atoms through a high-Q cavity, in the presence of frequency chirps. Despite the fact that the adiabatic approximation might be expected to fail, we were able to show that for proper choice of
We derive an analytical approximate solution of the time-dependent state vector in terms of material Bell states and coherent states of the field for a generalized two-atom Tavis-Cummings model with nonlinear intensity dependent matter-field interact
The quality of controlling a system of optical cavities in the Tavis-Cummings-Hubbard (TCH) model is estimated with the examples of quantum gates, quantum walks on graphs, and of the detection of singlet states. This type of control of complex system
We study the dynamics of two qubits interacting with a single mode of a harmonic oscillator beyond the rotating wave approximation in the ideally degenerate regime. Exact analytic expressions are obtained for state properties of interest, including q