ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantifying the Projected Suppression of Cluster Escape Velocity Profiles

49   0   0.0 ( 0 )
 نشر من قبل Vitali Halenka
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The radial escape-velocity profile of galaxy clusters has been suggested to be a promising and competitive tool for constraining mass profiles and cosmological parameters in an accelerating universe. However, the observed line-of-sight escape profile is known to be suppressed compared to the underlying radial (or tangential) escape profile. Past work has suggested that velocity anisotropy in the phase-space data is the root cause. Instead we find that the observed suppression is from the statistical under-sampling of the phase-spaces and that the radial escape edge can be accurately inferred from projected data. We build an analytical model for this suppression which only requires the number of observed galaxies $N$ in the phase-space data within the sky-projected range $0.3 le r/R_{200,critical} le 1$. The suppression function is an inverse power-law $Z_v = 1 + (N_0/N)^lambda$ with $N_0 = 14.205$ and $lambda= 0.467$. We test our model with N-body simulations, using dark matter particles, sub-halos, and semi-analytic galaxies as the phase-space tracers and find percent level accuracy and precision. We show that this suppression function is independent of cluster mass, cosmology, and velocity anisotropy.

قيم البحث

اقرأ أيضاً

59 - Gary A. Mamon 2010
When clusters of galaxies are viewed in projection, one cannot avoid picking up foreground/background interlopers (FBIs), that lie within the virial cone (VC), but outside the virial sphere. Structural & kinematic deprojection equations are not known for an expanding Universe, where the Hubble flow (HF) stretches the line-of-sight (LOS) distribution of velocities. We analyze 93 mock relaxed clusters, built from a cosmological simulation. The stacked mock cluster is well fit by an m=5 Einasto DM density profile (but only out to 1.5 virial radii [r_v]), with velocity anisotropy (VA) close to the Mamon-Lokas model with VA radius equal to that of density slope -2. The surface density of FBIs is nearly flat out to r_v, while their LOS velocity distribution shows a dominant gaussian cluster-outskirts component and a flat field component. This distribution of FBIs in projected phase space is nearly universal in mass. A local k=2.7 sigma velocity cut returns the LOS velocity dispersion profile (LOSVDP) expected from the NFW density and VA profiles measured in 3D. The HF causes a shallower outer LOSVDP that cannot be well matched by the Einasto model for any k. After this velocity cut, FBIs still account for 23% of DM particles within the VC (close to the observed fraction of cluster galaxies lying off the Red Sequence). The best-fit projected NFW/Einasto models underestimate the 3D concentration by 6+/-6% (16+/-7%) after (before) the velocity cut, unless a constant background is included in the fit. Assuming the correct mass profile, the VA profile is well recovered from the measured LOSVDP, with a slight bias towards more radial orbits in the outer regions. These small biases are overshadowed by large cluster-cluster variations caused by cosmic variance. An appendix provides an analytical approximation to the surface density, projected mass and tangential shear profiles of the Einasto model.
(Abridged) We have derived detailed R band luminosity profiles and structural parameters for a total of 430 brightest cluster galaxies (BCGs), down to a limiting surface brightness of 24.5 mag/arcsec^2. Light profiles were initially fitted with a Ser sics R^(1/n) model, but we found that 205 (~48) BCGs require a double component model to accurately match their light profiles. The best fit for these 205 galaxies is an inner Sersic model, with indices n~1-7, plus an outer exponential component. Thus, we establish the existence of two categories of the BCGs luminosity profiles: single and double component profiles. We found that double profile BCGs are brighter ~0.2 mag than single profile BCG. In fact, the Kolmogorov-Smirnov test applied to these subsamples indicates that they have different total magnitude distributions, with mean values M_R=-23.8 +/- 0.6 mag for single profile BCGs and M_R=-24.0 +/- 0.5 mag for double profile BCGs. We find that partial luminosities for both subsamples are indistinguishable up to r = 15 kpc, while for r > 20 kpc the luminosities we obtain are on average 0.2 mag brighter for double profile BCGs. This result indicates that extra-light for double profile BCGs does not come from the inner region but from the outer regions of these galaxies. The best fit slope of the Kormendy relation for the whole sample is a = 3.13 +/- 0.04$. However, when fitted separately, single and double profile BCGs show different slopes: a_(single) = 3.29 +/- 0.06 and a_(double)= 2.79 +/- 0.08. On the other hand, we did not find differences between these two BCGs categories when we compared global cluster properties such as the BCG-projected position relative to the cluster X-ray center emission, X-ray luminosity, or BCG orientation with respect to the cluster position angle.
Simulations have indicated that most of the escaped Lyman continuum photons escape through a minority of solid angles with near complete transparency, with the remaining majority of the solid angles largely opaque, resulting in a very broad and skewe d probability distribution function (PDF) of the escape fraction when viewed at different angles. Thus, the escape fraction of Lyman continuum photons of a galaxy observed along a line of sight merely represents the properties of the interstellar medium along that line of sight, which may be an ill-representation of true escape fraction of the galaxy averaged over its full sky. Here we study how Lyman continuum photons escape from galaxies at $z=4-6$, utilizing high-resolution large-scale cosmological radiation-hydrodynamic simulations. We compute the PDF of the mean escape fraction ($left<f_{rm esc,1D}right>$) averaged over mock observational samples, as a function of the sample size, compared to the true mean (had you an infinite sample size). We find that, when the sample size is small, the apparent mean skews to the low end. For example, for a true mean of 6.7%, an observational sample of (2,10,50) galaxies at $z=4$ would have have 2.5% probability of obtaining the sample mean lower than $left<f_{rm esc,1D}right>=$(0.007%, 1.8%, 4.1%) and 2.5% probability of obtaining the sample mean being greater than (43%, 18%, 11%). Our simulations suggest that at least $sim$ 100 galaxies should be stacked in order to constrain the true escape fraction within 20% uncertainty.
We study a sample of 207 nearby galaxy groups and clusters observed with XMM-Newton. Key aspects of this sample include the large size, the high data quality, and the large diversity of cluster dynamical states. We determine the overall metallicity w ithin 0.3R$_{500}$ and the radial distribution of the metals. On average, we find a mild dependence of the core metallicity with the average temperature of the system in agreement with previous results. However, we identify the cause of this mild dependence to be due to relaxed systems only; disturbed systems do not show this trend, on average. The large scatter observed in this relation is strongly associated with the dynamical state of the systems: relaxed systems have on average a higher metallicity in the core than disturbed objects. The radial profiles of relaxed systems are centrally peaked and show a steep decrease with radius, flattening beyond 0.3-0.4R$_{500}$. The metallicity of disturbed systems is also higher in the center but at much lower values than what is observed for relaxed objects. This finding is consistent with the picture that cluster mergers mix the abundance distribution by inducing large scale motions. The scatter of the radial profiles is quite large, but while for relaxed systems it decreases almost monotonically as function of the radius, for disturbed systems it shows a significant boost at large radii. Systems with a central radio source have a flatter profile indicating that central AGNs are an efficient mechanism to uplift and redistribute the metals in the ICM.
We study the evolution of the cross-correlation between voids and the mass density field - i.e. of void profiles. We show that approaches based on the spherical model alone miss an important contribution to the evolution on large scales of most inter est to cosmology: they fail to capture the well-known fact that the large-scale bias factor of conserved tracers evolves. We also show that the operations of evolution and averaging do not commute, but this difference is only significant within about two effective radii. We show how to include a term which accounts for the evolution of bias, which is directly related to the fact that voids move. The void motions are approximately independent of void size, so they are more significant for smaller voids that are typically more numerous. This term also contributes to void-matter pairwise velocities: including it is necessary for modeling the typical outflow speeds around voids. It is, therefore, important for void redshift space distortions. Finally, we show that the excursion set peaks/troughs approach provides a useful, but not perfect framework for describing void profiles and their evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا