ﻻ يوجد ملخص باللغة العربية
We develop relativistic short-range exchange energy functionals for four-component relativistic range-separated density-functional theory using a Dirac-Coulomb Hamiltonian in the no-pair approximation. We show how to improve the short-range local-density approximation exchange functional for large range-separation parameters by using the on-top exchange pair density as a new variable. We also develop a relativistic short-range generalized-gradient approximation exchange functional which further increases the accuracy for small range-separation parameters. Tests on the helium, beryllium, neon, and argon isoelectronic series up to high nuclear charges show that this latter functional gives exchange energies with a maximal relative percentage error of 3 %. The development of this exchange functional represents a step forward for the application of four-component relativistic range-separated density-functional theory to chemical compounds with heavy elements.
We construct the complementary short-range correlation relativistic local-density-approximation functional to be used in relativistic range-separated density-functional theory based on a Dirac-Coulomb Hamiltonian in the no-pair approximation. For thi
We introduce an approximation to the short-range correlation energy functional with multide-terminantal reference involved in a variant of range-separated density-functional theory. This approximation is a local functional of the density, the density
In this work we explore the potential of a new data-driven approach to the design of exchange-correlation (XC) functionals. The approach, inspired by convolutional filters in computer vision and surrogate functions from optimization, utilizes convolu
We present the self-consistent implementation of current-dependent (hybrid) meta generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to imple
A range-separated double-hybrid (RSDH) scheme which generalizes the usual range-separated hybrids and double hybrids is developed. This scheme consistently uses a two-parameter Coulomb-attenuating-method (CAM)-like decomposition of the electron-elect