ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity and charge density wave under a time-dependent periodic field in the one-dimensional attractive Hubbard model

63   0   0.0 ( 0 )
 نشر من قبل Ryo Fujiuchi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the competition between superconductivity (SC) and charge density wave (CDW) under a time-dependent periodic field in the attractive Hubbard model. By employing the time-dependent exact diagonalization method, we show that the driving frequency and amplitude of the external field can control the enhancement of either the superconducting pair or the CDW correlations, which are degenerate in the ground state of the half-filled attractive Hubbard model in the absence of the field. In the strong-coupling limit of the attractive Hubbard interaction, the controllability is characterized by the anisotropic interaction of the effective model. The anisotropy is induced by the external field and lifts the degeneracy of SC and CDW. We find that the enhancement or suppression of the superconducting pair and CDW correlations in the periodically-driven attractive Hubbard model can be well interpreted by the quench dynamics of the effective model derived in the strong-coupling limit.

قيم البحث

اقرأ أيضاً

We study the Holstein model of spinless fermions, which at half-filling exhibits a quantum phase transition from a metallic Tomonaga-Luttinger liquid phase to an insulating charge-density-wave (CDW) phase at a critical electron-phonon coupling streng th. In our work, we focus on the real-time evolution starting from two different types of initial states that are CDW ordered: (i) ideal CDW states with and without additional phonons in the system and (ii) correlated ground states in the CDW phase. We identify the mechanism for CDW melting in the ensuing real-time dynamics and show that it strongly depends on the type of initial state. We focus on the far-from-equilibrium regime and emphasize the role of electron-phonon coupling rather than dominant electronic correlations, thus complementing a previous study of photo-induced CDW melting [H. Hashimoto and S. Ishihara, Phys. Rev. B 96, 035154 (2017)]. The numerical simulations are performed by means of matrix-product-state based methods with a local basis optimization (LBO). Within these techniques, one rotates the local (bosonic) Hilbert spaces adaptively into an optimized basis that can then be truncated while still maintaining a high precision. In this work, we extend the time-evolving block decimation (TEBD) algorithm with LBO, previously applied to single-polaron dynamics, to a half-filled system. We demonstrate that in some parameter regimes, a conventional TEBD method without LBO would fail. Furthermore, we introduce and use a ground-state density-matrix renormalization group method for electron-phonon systems using local basis optimization. In our examples, we account for up to $M_{rm ph} = 40$ bare phonons per site by working with $O(10)$ optimal phonon modes.
We study the real-time and real-space dynamics of charge in the one-dimensional Hubbard model in the limit of high temperatures. To this end, we prepare pure initial states with sharply peaked density profiles and calculate the time evolution of thes e nonequilibrium states, by using numerical forward-propagation approaches to chains as long as 20 sites. For a class of typical states, we find excellent agreement with linear-response theory and unveil the existence of remarkably clean charge diffusion in the regime of strong particle-particle interactions. Moreover, we demonstrate that this diffusive behavior does not depend on certain details of our initial conditions, i.e., it occurs for five different realizations with random and nonrandom internal degrees of freedom, single and double occupation of the central site, and displacement of spin-up and spin-down particles.
52 - Yong Zheng 2020
The time evolution properties of charge current for the one-dimensional Hubbard model in an electric field have been studied in a rigorous manner. We find that there is a complete and orthonormal set of time-evolution states for which the charge curr ent can only keep zero or oscillate constantly, differing from the possible picture of damped or over-damped Bloch oscillations due to strong correlations. It is also found that, associated with these states, there is a set of constant phase factors, which are uniquely determined and are very useful on discussing the long-time evolution behaviors of the system.
The interplay between electron-electron correlations and disorder has been a central theme of condensed matter physics over the last several decades, with particular interest in the possibility that interactions might cause delocalization of an Ander son insulator into a metallic state, and the disrupting effects of randomness on magnetic order and the Mott phase. Here we extend this physics to explore electron-phonon interactions and show, via exact quantum Monte Carlo simulations, that the suppression of the charge density wave correlations in the half-filled Holstein model by disorder can stabilize a superconducting phase. Our simulations thus capture qualitatively the suppression of charge ordered phases and emergent superconductivity recently seen experimentally.
We study the charge conductivity of the one-dimensional repulsive Hubbard model at finite temperature using the method of dynamical quantum typicality, focusing at half filling. This numerical approach allows us to obtain current autocorrelation func tions from systems with as many as 18 sites, way beyond the range of standard exact diagonalization. Our data clearly suggest that the charge Drude weight vanishes with a power law as a function of system size. The low-frequency dependence of the conductivity is consistent with a finite dc value and thus with diffusion, despite large finite-size effects. Furthermore, we consider the mass-imbalanced Hubbard model for which the charge Drude weight decays exponentially with system size, as expected for a non-integrable model. We analyze the conductivity and diffusion constant as a function of the mass imbalance and we observe that the conductivity of the lighter component decreases exponentially fast with the mass-imbalance ratio. While in the extreme limit of immobile heavy particles, the Falicov-Kimball model, there is an effective Anderson-localization mechanism leading to a vanishing conductivity of the lighter species, we resolve finite conductivities for an inverse mass ratio of $eta gtrsim 0.25$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا