ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Advanced LIGO Single Interferometer Compact Binary Coalescence Signals in Coincidence with Gamma-Ray Events in Fermi-GBM

71   0   0.0 ( 0 )
 نشر من قبل Cosmin Stachie
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Presented is the description of a new and general method used to search for $gamma$-ray counterparts to gravitational-wave (GW) triggers. This method is specifically applied to single GW detector triggers. Advanced LIGO data from observing runs O1 and O2 were analyzed, thus each GW trigger comes from either the LIGO-Livingston or the LIGO-Hanford interferometer. For each GW trigger, Fermi Gamma-ray Burst Monitor data is searched and the most significant subthreshold signal counterpart is selected. Then, a methodology is defined in order to establish which of GW-$gamma$-ray pairs are likely to have a common origin. For that purpose an association ranking statistic is calculated from which a false alarm rate is derived. The events with the highest ranking statistics are selected for further analysis consisting of LIGO detector characterization and parameter estimation. The $gamma$-ray signal characteristics are also evaluated. We find no significant candidates from the search.

قيم البحث

اقرأ أيضاً

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativist ic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015. GW150914 was observed with a matched filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {sigma}.
Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model s election are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a blind injection where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron star and black hole parameter space over the individual mass range 1 Msun - 25 Msun and the full range of spin parameters. The cases reported in this study provide a snap-shot of the status of parameter estimation in preparation for the operation of advanced detectors.
We report the results of the first search for gravitational waves from compact binary coalescence using data from the LIGO and Virgo detectors. Five months of data were collected during the concurrent S5 (LIGO) and VSR1 (Virgo) science runs. The sear ch focused on signals from binary mergers with a total mass between 2 and 35 Msun. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for non-spinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7x10^-3, 2.2x10^-3 and 4.4x10^-4 yr^-1 L_10^-1 respectively, where L_10 is 10^10 times the blue solar luminosity. These upper limits are compared with astrophysical expectations.
We describe the PyCBC search for gravitational waves from compact-object binary coalescences in advanced gravitational-wave detector data. The search was used in the first Advanced LIGO observing run and unambiguously identified two black hole binary mergers, GW150914 and GW151226. At its core, the PyCBC search performs a matched-filter search for binary merger signals using a bank of gravitational-wave template waveforms. We provide a complete description of the search pipeline including the steps used to mitigate the effects of noise transients in the data, identify candidate events and measure their statistical significance. The analysis is able to measure false-alarm rates as low as one per million years, required for confident detection of signals. Using data from initial LIGOs sixth science run, we show that the new analysis reduces the background noise in the search, giving a 30% increase in sensitive volume for binary neutron star systems over previous searches.
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approxim ately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well-modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant events have been found by either the unmodeled search or the cosmic string search. We thus present search sensitivity for a variety of signal waveforms and report upper limits on the source rate-density as function of the characteristic frequency of the signal. These upper limits are a factor of three lower than the first observing run, with a $50%$ detection probability for gravitational-wave emissions with energies of $sim10^{-9}M_odot c^2$ at 153 Hz. For the search dedicated to cosmic string cusps we consider several loop distribution models, and present updated constraints from the same search done in the first observing run.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا