ﻻ يوجد ملخص باللغة العربية
The spontaneous pedestal formation above a power threshold at the edge of magnetically confined plasma is modelled for the first time in flux driven three-dimensional fluid simulations of electromagnetic turbulence with the code EMEDGE3D. The role of the collisional friction between trapped and passing particles is shown to be the key ingredient for shearing the radial electric field, hence stabilizing the turbulence, rather than the Maxwell and Reynolds stresses. The isotope effect, observed in many tokamaks worldwide, is recovered in EMEDGE3D simulations: the power threshold for pedestal formation is lower for Tritium than for Deuterium. The turbulence auto-correlation time is found to increase with the ion mass easing the radial electric shear stabilization, hence the pedestal formation.
In some conditions, I-mode plasmas can feature pedestal relaxation events (PREs) that transiently enhance the energy reaching the divertor target plates. To shed light into their appearance, characteristics and energy reaching the divertor targets, a
Cross-field neoclassical transport of heat, particles and momentum is studied in sharp density pedestals, with a focus on isotope and profile effects, using a radially global approach. Global effects -- which tend to reduce the peak ion heat flux, an
Understanding the multi-scale neoclassical and turbulence physics in the edge region (pedestal + scrape-off layer) is required in order to reliably predict performance in future fusion devices. We explore turbulent characteristics in the edge region
A long-lasting debate in space plasma physics concerns the nature of subproton-scale fluctuations in solar wind (SW) turbulence. Over the past decade, a series of theoretical and observational studies were presented in favor of either kinetic Alfven
We are developing a new continuum gyrokinetic code, Gkeyll, for use in edge plasma simulations, and here present initial simulations of turbulence on open field lines with model sheath boundary conditions. The code implements an energy conserving dis