ترغب بنشر مسار تعليمي؟ اضغط هنا

Turing patterns in a diffusive Holling-Tanner predator-prey model with an alternative food source for the predator

250   0   0.0 ( 0 )
 نشر من قبل Claudio Arancibia-Ibarra
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this manuscript, we consider temporal and spatio-temporal modified Holling-Tanner predator-prey models with predator-prey growth rate as a logistic type, Holling type II functional response and alternative food sources for the predator. From our result of the temporal model, we identify regions in parameter space in which Turing instability in the spatio-temporal model is expected and we show numerical evidence where the Turing instability leads to spatio-temporal periodic solutions. Subsequently, we analyse these instabilities. We use simulations to illustrate the behaviour of both the temporal and spatio-temporal model.



قيم البحث

اقرأ أيضاً

We study a predator-prey model with Holling type I functional response, an alternative food source for the predator, and multiple Allee effects on the prey. We show that the model has at most two equilibrium points in the first quadrant, one is alway s a saddle point while the other can be a repeller or an attractor. Moreover, there is always a stable equilibrium point that corresponds to the persistence of the predator population and the extinction of the prey population. Additionally, we show that when the parameters are varied the model displays a wide range of different bifurcations, such as saddle-node bifurcations, Hopf bifurcations, Bogadonov-Takens bifurcations and homoclinic bifurcations. We use numerical simulations to illustrate the impact changing the predation rate, or the non-fertile prey population, and the proportion of alternative food source have on the basins of attraction of the stable equilibrium point in the first quadrant (when it exists). In particular, we also show that the basin of attraction of the stable positive equilibrium point in the first quadrant is bigger when we reduce the depensation in the model.
60 - Fei Sun 2020
Groups in ecology are often affected by sudden environmental perturbations. Parameters of stochastic models are often imprecise due to various uncertainties. In this paper, we formulate a stochastic Holling II one-predator two-prey system with jumps and interval parameters. Firstly, we prove the existence and uniqueness of the positive solution. Moreover, the sufficient conditions for the extinction and persistence in the mean of the solution are obtained.
217 - Miquel Montero 2009
We present a dynamical model for the price evolution of financial assets. The model is based in a two level structure. In the first stage one finds an agent-based model that describes the present state of the investors beliefs, perspectives or strate gies. The dynamics is inspired by a model for describing predator-prey population evolution: agents change their mind through self- or mutual interaction, and the decision is adopted on a random basis, with no direct influence of the price itself. One of the most appealing properties of such a system is the presence of large oscillations in the number of agents sharing the same perspective, what may be linked with the existence of bullish and bearish periods in financial markets. In the second stage one has the pricing mechanism, which will be driven by the relative population in the different investors groups. The price equation will depend on the specific nature of the species, and thus it may change from one market to the other: we will firstly present a simple model of excess demand, and subsequently consider a more elaborate liquidity model. The outcomes of both models are analysed and compared.
We consider the properties of a slow-fast prey-predator system in time and space. We first argue that the simplicity of prey-predator system is apparent rather than real and there are still many of its hidden properties that have been poorly studied or overlooked altogether. We further focus on the case where, in the slow-fast system, the prey growth is affected by a weak Allee effect. We first consider this system in the non-spatial case and make its comprehensive study using a variety of mathematical techniques. In particular, we show that the interplay between the Allee effect and the existence of multiple timescales may lead to a regime shift where small-amplitude oscillations in the population abundances abruptly change to large-amplitude oscillations. We then consider the spatially explicit slow-fast prey-predator system and reveal the effect of different time scales on the pattern formation. We show that a decrease in the timescale ratio may lead to another regime shift where the spatiotemporal pattern becomes spatially correlated leading to large-amplitude oscillations in spatially average population densities and potential species extinction.
We study the adaptive dynamics of predator-prey systems modeled by a dynamical system in which the traits of predators and prey are allowed to evolve by small mutations. When only the prey are allowed to evolve, and the size of the mutational change tends to 0, the system does not exhibit long term prey coexistence and the trait of the resident prey type converges to the solution of an ODE. When only the predators are allowed to evolve, coexistence of predators occurs. In this case, depending on the parameters being varied, we see (i) the number of coexisting predators remains tight and the differences in traits from a reference species converge in distribution to a limit, or (ii) the number of coexisting predators tends to infinity, and we calculate the asymptotic rate at which the traits of the least and most fit predators in the population increase. This last result is obtained by comparison with a branching random walk killed to the left of a linear boundary and a finite branching-selection particle system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا