ﻻ يوجد ملخص باللغة العربية
The ability to identify time periods when individuals are most susceptible to exposures, as well as the biological mechanisms through which these exposures act, is of great public health interest. Growing evidence supports an association between prenatal exposure to air pollution and epigenetic marks, such as DNA methylation, but the timing and gene-specific effects of these epigenetic changes are not well understood. Here, we present the first study that aims to identify prenatal windows of susceptibility to air pollution exposures in cord blood DNA methylation. In particular, we propose a function-on-function regression model that leverages data from nearby DNA methylation probes to identify epigenetic regions that exhibit windows of susceptibility to ambient particulate matter less than 2.5 microns (PM$_{2.5}$). By incorporating the covariance structure among both the multivariate DNA methylation outcome and the time-varying exposure under study, this framework yields greater power to detect windows of susceptibility and greater control of false discoveries than methods that model probes independently. We compare our method to a distributed lag model approach that models DNA methylation in a probe-by-probe manner, both in simulation and by application to motivating data from the Project Viva birth cohort. In two epigenetic regions selected based on prior studies of air pollution effects on epigenome-wide methylation, we identify windows of susceptibility to PM$_{2.5}$ exposure near the beginning and middle of the third trimester of pregnancy.
Exposures to environmental chemicals during gestation can alter health status later in life. Most studies of maternal exposure to chemicals during pregnancy have focused on a single chemical exposure observed at high temporal resolution. Recent resea
We study additive function-on-function regression where the mean response at a particular time point depends on the time point itself as well as the entire covariate trajectory. We develop a computationally efficient estimation methodology based on a
In this paper, a functional partial quantile regression approach, a quantile regression analog of the functional partial least squares regression, is proposed to estimate the function-on-function linear quantile regression model. A partial quantile c
Environmental data may be large due to number of records, number of covariates, or both. Random forests has a reputation for good predictive performance when using many covariates with nonlinear relationships, whereas spatial regression, when using r
We propose a versatile joint regression framework for count responses. The method is implemented in the R add-on package GJRM and allows for modelling linear and non-linear dependence through the use of several copulae. Moreover, the parameters of th