ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared photometry of the dwarf nova V2051 Ophiuchi: II -- The quiescent accretion disc and its spiral arms

172   0   0.0 ( 0 )
 نشر من قبل Raymundo Baptista
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the analysis of time-series of infrared $JHK_s$ photometry of the dwarf nova V2051 Oph in quiescence with eclipse mapping techniques to investigate structures and the spectrum of its accretion disc. The light curves after removal of the ellipsoidal variations caused by the mass-donor star show a double-wave modulation signalling the presence of two asymmetric light sources in the accretion disc. Eclipse maps reveal two spiral arms on top of the disc emission, one at $R_1= 0.28pm 0.02 ,R_mathrm{L1}$ and the other at $R_2= 0.42pm 0.02 ,R_mathrm{L1}$ (where $R_mathrm{L1}$ is the distance from disc centre to the inner Lagrangian point), which are seen face-on at binary phases consistent with the maxima of the double-wave modulation. The wide open angle inferred for the spiral arms ($theta_s= 21^o pm 4^o$) suggests the quiescent accretion disc of V2051 Oph has high viscosity. The accretion disc is hot and optically thin in its inner regions ($T_mathrm{gas}sim 10-12 times 10^3,K$ and surface densities $sim 10^{-3}-10^{-2},g,cm^{-2}$), and becomes cool and opaque in its outer regions.



قيم البحث

اقرأ أيضاً

We report on the eclipse mapping analysis of an ensemble of light curves of the dwarf nova V2051 Oph with the aim to study the spatial distribution of its steady-light and flickering sources. The data are combined to derive the orbital dependency of the steady-light and the flickering components at two different brightness levels, named the faint and bright states. The differences in brightness are caused by long-term variations in the mass transfer rate from the secondary star. Eclipse maps of the steady-light show enhanced emission along the ballistic stream trajectory, in a clear evidence of gas stream overflow. We identify two different and independent sources of flickering in V2051 Oph. Low-frequency flickering arises in the overflowing gas stream and is associated to the mass transfer process. It maximum emission occurs at the position of closest approach of the gas stream to the white dwarf, and its spatial distribution changes in response to variations in mass transfer rate. High-frequency flickering originates in the accretion disk, showing a radial distribution similar to that of the steady-light maps and no evidence of emission from the hot spot, gas stream or white dwarf. This disk flickering component has a relative amplitude of about 3 per cent of the steady disk light, independent of disk radius and brightness state. If the disk flickering is caused by fluctuations in the energy dissipation rate induced by MHD turbulence, its relative amplitude lead to a viscosity parameter alpha= 0.1-0.2 at all radii for the quiescent disk. This value seems uncomfortably high to be accommodated by the disk instability model [abridged].
We present high-resolution (30 mas or 130 au at 4.2 kpc) Atacama Large Millimeter/submillimeter Array observations at 1.2 mm of the disc around the forming O-type star AFGL 4176 mm1. The disc (AFGL 4176 mm1-main) has a radius of ~1000 au and contains significant structure, most notably a spiral arm on its redshifted side. We fitted the observed spiral with logarithmic and Archimedean spiral models. We find that both models can describe its structure, but the Archimedean spiral with a varying pitch angle fits its morphology marginally better. As well as signatures of rotation across the disc, we observe gas arcs in CH$_3$CN that connect to other millimetre continuum sources in the field, supporting the picture of interactions within a small cluster around AFGL 4176 mm1-main. Using local thermodynamic equilibrium modelling of the CH$_3$CN K-ladder, we determine the temperature and velocity field across the disc, and thus produce a map of the Toomre stability parameter. Our results indicate that the outer disc is gravitationally unstable and has already fragmented or is likely to fragment in the future, possibly producing further companions. These observations provide evidence that disc fragmentation is one possible pathway towards explaining the high fraction of multiple systems around high-mass stars.
In this paper we analyzed the behavior of the unusual dwarf nova EM Cyg using the data obtained in April-October, 2007 in Vyhorlat observatory (Slovak Republic) and in September, 2006 in Crimean Astrophysical Observatory (Ukraine). During our observa tions EM Cyg has shown outbursts in every 15-40 days. Because on the light curves of EM Cyg the partial eclipse of an accretion disc is observed we applied the eclipse mapping technique to reconstruct the temperature distribution in eclipsed parts of the disc. Calculations of the accretion rate in the system were made for the quiescent and the outburst states of activity for different distances.
We report on the multi-wavelength photometry of the 2018 superoutburst in EG Cnc. We have detected stage A superhumps and long-lasting late-stage superhumps via the optical photometry and have constrained the binary mass ratio and its possible range. The median value of the mass ratio is 0.048 and the upper limit is 0.057, which still implies that EG Cnc is one of the possible candidates for the period bouncer. This object also showed multiple rebrightenings in this superoutburst, which are the same as those in its previous superoutburst in 1996--1997 despite the difference in the main superoutburst. This would represent that the rebrightening type is inherent to each object and is independent of the initial disk mass at the beginning of superoutbursts. We also found that $B-I$ and $J-K_{rm S}$ colors were unusually red just before the rebrightening phase and became bluer during the quiescence between rebrightenings, which would mean that the low-temperature mass reservoir at the outermost disk accreted with time after the main superoutburst. Also, the ultraviolet flux was sensitive to rebrightenings as well as the optical flux, and the $U-B$ color became redder during the rebrightening phase, which would indicate that the inner disk became cooler when this object repeated rebrightenings. Our results thus basically support the idea that the cool mass reservoir in the outermost disk is responsible for rebrightenings.
81 - Peeter Tenjes 2017
Aims: Density waves are often considered as the triggering mechanism of star formation in spiral galaxies. Our aim is to study relations between different star formation tracers (stellar UV and near-IR radiation and emission from HI, CO and cold dust ) in the spiral arms of M31, to calculate stability conditions in the galaxy disc and to draw conclusions about possible star formation triggering mechanisms. Methods: We select fourteen spiral arm segments from the de-projected data maps and compare emission distributions along the cross sections of the segments in different datasets to each other, in order to detect spatial offsets between young stellar populations and the star forming medium. By using the disc stability condition as a function of perturbation wavelength and distance from the galaxy centre we calculate the effective disc stability parameters and the least stable wavelengths at different distances. For this we utilise a mass distribution model of M31 with four disc components (old and young stellar discs, cold and warm gaseous discs) embedded within the external potential of the bulge, the stellar halo and the dark matter halo. Each component is considered to have a realistic finite thickness. Results: No systematic offsets between the observed UV and CO/far-IR emission across the spiral segments are detected. The calculated effective stability parameter has a minimal value Q_{eff} ~ 1.8 at galactocentric distances 12 - 13 kpc. The least stable wavelengths are rather long, with the minimal values starting from ~ 3 kpc at distances R > 11 kpc. Conclusions: The classical density wave theory is not a realistic explanation for the spiral structure of M31. Instead, external causes should be considered, e.g. interactions with massive gas clouds or dwarf companions of M31.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا