ﻻ يوجد ملخص باللغة العربية
Software control flow integrity (CFI) solutions have been applied to the Linux kernel for memory protection. Due to performance costs, deployed software CFI solutions are coarse grained. In this work, we demonstrate a precise hardware-assisted kernel CFI running on widely-used off-the-shelf processors. Specifically, we use the ARMv8.3 pointer authentication (PAuth) extension and present a design that uses it to achieve strong security guarantees with minimal performance penalties. Furthermore, we show how deployment of such security primitives in the kernel can significantly differ from their user space application.
The security of billions of devices worldwide depends on the security and robustness of the mainline Linux kernel. However, the increasing number of kernel-specific vulnerabilities, especially memory safety vulnerabilities, shows that the kernel is a
We introduce a form of steganography in the domain of machine learning which we call training set camouflage. Imagine Alice has a training set on an illicit machine learning classification task. Alice wants Bob (a machine learning system) to learn th
Control-flow hijacking attacks are used to perform malicious com-putations. Current solutions for assessing the attack surface afteracontrol flow integrity(CFI) policy was applied can measure onlyindirect transfer averages in the best case without pr
Widespread use of memory unsafe programming languages (e.g., C and C++) leaves many systems vulnerable to memory corruption attacks. A variety of defenses have been proposed to mitigate attacks that exploit memory errors to hijack the control flow of
LockDoc is an approach to extract locking rules for kernel data structures from a dynamic execution trace recorded while the system is under a benchmark load. These locking rules can e.g. be used to locate synchronization bugs. For high rule precisio