ترغب بنشر مسار تعليمي؟ اضغط هنا

Different types of star-planet interactions

93   0   0.0 ( 0 )
 نشر من قبل Aline Vidotto
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. A. Vidotto




اسأل ChatGPT حول البحث

Stars and their exoplanets evolve together. Depending on the physical characteristics of these systems, such as age, orbital distance and activity of the host stars, certain types of star-exoplanet interactions can dominate during given phases of the evolution. Identifying observable signatures of such interactions can provide additional avenues for characterising exoplanetary systems. Here, I review some recent works on star-planet interactions and discuss their observability at different wavelengths across the electromagnetic spectrum.



قيم البحث

اقرأ أيضاً

186 - K. Poppenhaeger 2014
Stellar magnetic activity is an important factor in the formation and evolution of exoplanets. Magnetic phenomena like stellar flares, coronal mass ejections, and high-energy emission affect the exoplanetary atmosphere and its mass loss over time. On e major question is whether the magnetic evolution of exoplanet host stars is the same as for stars without planets; tidal and magnetic interactions of a star and its close-in planets may play a role in this. Stellar magnetic activity also shapes our ability to detect exoplanets with different methods in the first place, and therefore we need to understand it properly to derive an accurate estimate of the existing exoplanet population. Here I review recent theoretical and observational results, as well as outline some avenues for future progress.
We measured the chromospheric activity of the four hot Jupiter hosts WASP-43, WASP-51/HAT-P-30, WASP-72 & WASP-103 to search for anomalous values caused by the close-in companions. The Mount Wilson Ca II H&K S-index was calculated for each star using observations taken with the Robert Stobie Spectrograph at the Southern African Large Telescope. The activity level of WASP-43 is anomalously high relative to its age and falls among the highest values of all known main sequence stars. We found marginal evidence that the activity of WASP-103 is also higher than expected from the system age. We suggest that for WASP-43 and WASP-103 star-planet interactions (SPI) may enhance the Ca II H&K core emission. The activity levels of WASP-51/HAT-P-30 and WASP-72 are anomalously low, with the latter falling below the basal envelope for both main sequence and evolved stars. This can be attributed to circumstellar absorption due to planetary mass loss, though absorption in the ISM may contribute. A quarter of known short period planet hosts exhibit anomalously low activity levels, including systems with hot Jupiters and low mass companions. Since SPI can elevate and absorption can suppress the observed chromospheric activity of stars with close-in planets, their Ca II H&K activity levels are an unreliable age indicator. Systems where the activity is depressed by absorption from planetary mass loss are key targets for examining planet compositions through transmission spectroscopy.
75 - Lin He , Song Wang , Xiaojie Xu 2019
X-ray emission is an important indicator of stellar activity. In this paper, we study stellar X-ray activity using the XMM-Newton and LAMOST data for different types of stars. We provide a sample including 1259 X-ray emitting stars, of which 1090 hav e accurate stellar parameter estimations. Our sample size is much larger than those in previous works. We find a bimodal distribution of X-ray to optical flux ratio (log(fX/fV)) for G and K stars. We interpret that this bimodality is due to two subpopulations with different coronal heating rates. Furthermore, using the full widths at half maxima calculated from H{alpha} and Hb{eta} lines, we show that these stars in the inactive peaks have smaller rotational velocities. This is consistent with the magnetic dynamo theory that stars with low rotational velocities have low levels of stellar activity. We also examine the correlation between log(fX/fV) and luminosity of the excess emission in the H{alpha} line, and find a tight relation between the coronal and chromospheric activity indicators.
Context. 55 Cancri hosts five known exoplanets, most notably the hot super-Earth 55 Cnc e, which is one of the hottest known transiting super-Earths. Aims. Due to the short orbital separation and host star brightness, 55 Cnc e provides one of the bes t opportunities for studying star-planet interactions (SPIs). We aim to understand possible SPIs in this system, which requires a detailed understanding of the stellar magnetic field and wind impinging on the planet. Methods. Using spectropolarimetric observations, and Zeeman Doppler Imaging, we derive a map of the large-scale stellar magnetic field. We then simulate the stellar wind starting from the magnetic field map, using a 3D MHD model. Results. The map of the large-scale stellar magnetic field we derive has an average strength of 3.4 G. The field has a mostly dipolar geometry, with the dipole tilted by 90 degrees with respect to the rotation axis, and dipolar strength of 5.8 G at the magnetic pole. The wind simulations based on this magnetic geometry lead us to conclude that 55 Cnc e orbits inside the Alfven surface of the stellar wind, implying that effects from the planet on the wind can propagate back to the stellar surface and result in SPI.
Detecting binary stars in photometric time series is traditionally done by measuring eclipses. This requires the orbital plane to be aligned with the observer. A new method without that requirement uses stellar oscillations to measure delays in the l ight arrival time and has been successfully applied to $delta$ Scuti stars. However, application to other types of stars has not been explored. To investigate this we simulated light curves with a range of input parameters. We find a correlation between the signal-to-noise of the pulsation modes and the time delay required to detect binary motion. The detectability of the binarity in the simulations and in real $Kepler$ data shows strong agreement, hence, we describe the factors that have prevented this method from discovering binary companions to stars belonging to various classes of pulsating stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا