ﻻ يوجد ملخص باللغة العربية
Kuiper Belt Object (385446) Manwe-Thorondor is a multi-object system with mutual events predicted to occur from 2014 to 2019. To detect the events, we observed the system at 4 epochs (UT 2016 Aug 25 and 26, 2017 Jul 22 and 25, 2017 Nov 9, and 2018 Oct 6) in g, r, and VR bands using the 4-m SOAR and the 8.1-m Gemini South telescopes at Cerro Pachon, Chile and Lowell Observatory s 4.3-m Discovery Channel Telescope at Happy Jack, Arizona. These dates overlap the uncertainty range (+/- 0.5 d) for four inferior events (Thorondor eclipsing Manwe). We clearly observe variability for the unresolved system with a double-peaked period 11.88190 +/- 0.00005 h and ~0.5 mag amplitude together with much longer-term variability. Using a multi-component model, we simultaneously fit our observations and earlier photometry measured separately for Manwe and Thorondor with the Hubble Space Telescope. Our fit suggests Manwe is bi-lobed, close to the barbell shape expected for a strengthless body with density ~0.8 g/cm3 in hydrostatic equilibrium. For Manwe, we thereby derive maximum width to length ratio ~0.30, surface area equivalent to a sphere of diameter 190 km, geometric albedo 0.06, mass 1.4x1018 kg, and spin axis oriented ~75 deg from Earth s line of sight. Changes in Thorondor s brightness by ~0.6 mag with ~300-d period may account for the system s long-term variability. Mutual events with unexpectedly shallow depth and short duration may account for residuals to the fit. The system is complex, providing a challenging puzzle for future modeling efforts.
A new Hubble Space Telescope observation of the 7:4 resonant transneptunian binary system (385446) Manwe has shown that, of two previously reported solutions for the orbit of its satellite Thorondor, the prograde one is correct. The orbit has a perio
Here we report WFPC2 observations of the Quaoar-Weywot Kuiper belt binary. From these observations we find that Weywot is on an elliptical orbit with eccentricity of 0.14 {pm} 0.04, period of 12.438 {pm} 0.005 days, and a semi-major axis of 1.45 {pm}
Persephone is a NASA concept mission study that addresses key questions raised by New Horizons encounters with Kuiper Belt objects (KBOs), with arguably the most important being Does Pluto have a subsurface ocean?. More broadly, Persephone would answ
We investigate what can be learned about a population of distant KBOs by studying the statistical properties of their light curves. Whereas others have successfully inferred the properties of individual, highly variable KBOs, we show that the fractio
Here, we present results on the intrinsic collision probabilities, $ P_I$, and range of collision speeds, $V_I$, as a function of the heliocentric distance, $r$, in the trans-Neptunian region. The collision speed is one of the parameters, that serves