ﻻ يوجد ملخص باللغة العربية
We report an optical homogeneous linewidth of 580 $pm$ 20 Hz of Er$^{3+}$:Y$_2$O$_3$ ceramics at millikelvin temperatures, narrowest so far in rare-earth doped ceramics. We show slow spectral diffusion of $sim$2 kHz over a millisecond time scale. Temperature, field dependence of optical coherence and spectral diffusions reveal the remaining dephasing mechanism as elastic two-level systems in polycrystalline grain boundaries and superhyperfine interactions of Er$^{3+}$ with nuclear spins. In addition, we perform spectral holeburning and measure up to 5 s hole lifetimes. These spectroscopic results put Er$^{3+}$:Y$_2$O$_3$ ceramics as a promising candidate for telecommunication quantum memories and light-matter interfaces.
Decoherence of the 795 nm $^3$H$_6$ to $^3$H$_4$ transition in 1%Tm$^{3+}$:Y$_3$Ga$_5$O$_{12}$ (Tm:YGG) is studied at temperatures as low as 1.2 K. The temperature, magnetic field, frequency, and time-scale (spectral diffusion) dependence of the opti
We report on the study of optical properties of mist CVD grown alpha Gallium oxide with the observation of excitonic absorption in spectral responsivity measurements. 163 nm of Gallium oxide was grown on sapphire using Gallium acetylacetonate as the
Direct UV-written waveguides are fabricated in silica-on-silicon with birefringence of $(4.9 pm 0.2) times 10^{-4}$, much greater than previously reported in this platform. We show that these waveguides are suitable for the generation of heralded sin
We investigate the relevant spectroscopic properties of the 795 nm $^3$H$_6$$leftrightarrow$$^3$H$_4$ transition in 1% Tm$^{3+}$:Y$_3$Ga$_5$O$_{12}$ at temperatures as low as 1.2 K for optical quantum memories based on persistent spectral tailoring o
Nanostructured rare-earth-ion doped materials are increasingly being investigated for on-chip implementations of quantum information processing protocols as well as commercial applications such as fluorescent lighting. However, achieving high-quality