ﻻ يوجد ملخص باللغة العربية
In fully dynamic graphs, we know how to maintain a 2-approximation of maximum matching extremely fast, that is, in polylogarithmic update time or better. In a sharp contrast and despite extensive studies, all known algorithms that maintain a $2-Omega(1)$ approximate matching are much slower. Understanding this gap and, in particular, determining the best possible update time for algorithms providing a better-than-2 approximate matching is a major open question. In this paper, we show that for any constant $epsilon > 0$, there is a randomized algorithm that with high probability maintains a $2-Omega(1)$ approximate maximum matching of a fully-dynamic general graph in worst-case update time $O(Delta^{epsilon}+text{polylog } n)$, where $Delta$ is the maximum degree. Previously, the fastest fully dynamic matching algorithm providing a better-than-2 approximation had $O(m^{1/4})$ update-time [Bernstein and Stein, SODA 2016]. A faster algorithm with update-time $O(n^epsilon)$ was known, but worked only for maintaining the size (and not the edges) of the matching in bipartite graphs [Bhattacharya, Henzinger, and Nanongkai, STOC 2016].
The problem of (vertex) $(Delta+1)$-coloring a graph of maximum degree $Delta$ has been extremely well-studied over the years in various settings and models. Surprisingly, for the dynamic setting, almost nothing was known until recently. In SODA18, B
We present the first algorithm for maintaining a maximal independent set (MIS) of a fully dynamic graph---which undergoes both edge insertions and deletions---in polylogarithmic time. Our algorithm is randomized and, per update, takes $O(log^2 Delta
Let $G=(V, E)$ be a given edge-weighted graph and let its {em realization} $mathcal{G}$ be a random subgraph of $G$ that includes each edge $e in E$ independently with probability $p$. In the {em stochastic matching} problem, the goal is to pick a sp
The maximum matching problem in dynamic graphs subject to edge updates (insertions and deletions) has received much attention over the last few years; a multitude of approximation/time tradeoffs were obtained, improving upon the folklore algorithm, w
In the dynamic minimum set cover problem, a challenge is to minimize the update time while guaranteeing close to the optimal $min(O(log n), f)$ approximation factor. (Throughout, $m$, $n$, $f$, and $C$ are parameters denoting the maximum number of se