ترغب بنشر مسار تعليمي؟ اضغط هنا

On the effective theory of neutrino-electron and neutrino-quark interactions

66   0   0.0 ( 0 )
 نشر من قبل Oleksandr Tomalak
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the four Fermi effective theory of neutrino interactions within the Standard Model including one-loop electroweak radiative corrections, in combination with the measured muon lifetime and precision electroweak data. Including two-loop matching and three-loop running corrections, we determine lepton coefficients accounting for all large logarithms through relative order $cal{O}(alpha alpha_s)$ and quark coefficients accounting for all large logarithms through ${cal{O}}(alpha)$. We present four-fermion coefficients valid in $n_f=3$ and $n_f=4$ flavor quark theories, as well as in the extreme low-energy limit. We relate the coefficients in this limit to neutrino charge radii governing matter effects via forward neutrino scattering on charged particles.



قيم البحث

اقرأ أيضاً

Theoretical predictions for elastic neutrino-electron scattering have no hadronic or nuclear uncertainties at leading order making this process an important tool for normalizing neutrino flux. However, the process is subject to large radiative correc tions that differ according to experimental conditions. In this paper, we collect new and existing results for total and differential cross sections accompanied by radiation of one photon, $ u e to u e (gamma)$. We perform calculations within the Fermi effective theory and provide analytic expressions for the electron energy spectrum and for the total electromagnetic energy spectrum as well as for double- and triple-differential cross sections with respect to electron energy, electron angle, photon energy, and photon angle. We discuss illustrative applications to accelerator-based neutrino experiments and provide the most precise up-to-date values of neutrino-electron scattering cross sections. We present an analysis of theoretical error, which is dominated by the $sim 0.2 - 0.4%$ uncertainty of the hadronic correction. We also discuss how searches for new physics can be affected by radiative corrections.
Proposed medium-baseline reactor neutrino experiments offer unprecedented opportunities to probe, at the same time, the mass-mixing parameters which govern $ u_e$ oscillations both at short wavelength (delta m^2 and theta_{12}) and at long wavelength (Delta m^2 and theta_{13}), as well as their tiny interference effects related to the mass hierarchy (i.e., the relative sign of Delta m^2 and delta m^2). In order to take full advantage of these opportunities, precision calculations and refined statistical analyses of event spectra are required. In such a context, we revisit several input ingredients, including: nucleon recoil in inverse beta decay and its impact on energy reconstruction and resolution, hierarchy and matter effects in the oscillation probability, spread of reactor distances, irreducible backgrounds from geoneutrinos and from far reactors, and degeneracies between energy scale and spectrum shape uncertainties. We also introduce a continuous parameter alpha, which interpolates smoothly between normal hierarchy (alpha=+1) and inverted hierarchy (alpha=-1). The determination of the hierarchy is then transformed from a test of hypothesis to a parameter estimation, with a sensitivity given by the distance of the true case (either alpha=+1 or alpha=-1) from the undecidable case (alpha=0). Numerical experiments are performed for the specific set up envisaged for the JUNO project, assuming a realistic sample of O(10^5) reactor events. We find a typical sensitivity of ~2 sigma to the hierarchy in JUNO, which, however, can be challenged by energy scale and spectrum shape systematics, whose possible conspiracy effects are investigated. The prospective accuracy reachable for the other mass-mixing parameters is also discussed.
151 - Andre de Gouvea 2013
Neutrino masses are clear evidence for physics beyond the standard model and much more remains to be understood about the neutrino sector. We highlight some of the outstanding questions and research opportunities in neutrino theory. We show that most of these questions are directly connected to the very rich experimental program currently being pursued (or at least under serious consideration) in the United States and worldwide. Finally, we also comment on the state of the theoretical neutrino physics community in the U.S.
We examine the prospects of probing nonstandard interactions (NSI) of neutrinos in the e-tau sector with upcoming long-baseline nu_mu -> nu_e oscillation experiments. First conjectured decades ago, neutrino NSI remain of great interest, especially in light of the recent 8B solar neutrino measurements by SNO, Super-Kamiokande, and Borexino. We observe that the recent discovery of large theta_13 implies that long-baseline experiments have considerable NSI sensitivity, thanks to the interference of the standard and new physics conversion amplitudes. In particular, in some parts of NSI parameter space, the upcoming NOvA experiment will be sensitive enough to see ~ 3sigma deviations from the SM-only hypothesis. On the flip side, NSI introduce important ambiguities in interpreting NOvA results as measurements of CP-violation, the mass hierarchy and the octant of theta_23. In particular, observed CP violation could be due to a phase coming from NSI, rather than the vacuum Hamiltonian. The proposed LBNE experiment, with its longer ~ 1300 km baseline, may break many of these interpretative degeneracies.
Recent measurements of the germanium quenching factor deviate significantly from the predictions of the standard Lindhard model for nuclear recoil energies below a keV. This departure may be explained by the Migdal effect in neutron scattering on ger manium. We show that the Migdal effect on the quenching factor can mimic the signal of a light Z or light scalar mediator in coherent elastic neutrino nucleus scattering experiments with reactor antineutrinos. It is imperative that the quenching factor of nuclei with low recoil energy thresholds be precisely measured close to threshold to avoid such confusion. This will also help in experimental searches of light dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا