ﻻ يوجد ملخص باللغة العربية
Traditional neuroimage analysis pipelines involve computationally intensive, time-consuming optimization steps, and thus, do not scale well to large cohort studies with thousands or tens of thousands of individuals. In this work we propose a fast and accurate deep learning based neuroimaging pipeline for the automated processing of structural human brain MRI scans, replicating FreeSurfers anatomical segmentation including surface reconstruction and cortical parcellation. To this end, we introduce an advanced deep learning architecture capable of whole brain segmentation into 95 classes. The network architecture incorporates local and global competition via competitive dense blocks and competitive skip pathways, as well as multi-slice information aggregation that specifically tailor network performance towards accurate segmentation of both cortical and sub-cortical structures. Further, we perform fast cortical surface reconstruction and thickness analysis by introducing a spectral spherical embedding and by directly mapping the cortical labels from the image to the surface. This approach provides a full FreeSurfer alternative for volumetric analysis (in under 1 minute) and surface-based thickness analysis (within only around 1h runtime). For sustainability of this approach we perform extensive validation: we assert high segmentation accuracy on several unseen datasets, measure generalizability and demonstrate increased test-retest reliability, and high sensitivity to group differences in dementia.
The relationship between cognition and white matter hyperintensities (WMH) volumes often depends on the accuracy of the lesion segmentation algorithm used. As such, accurate detection and quantification of WMH is of great interest. Here, we use a dee
We present an automated method to track and identify neurons in C. elegans, called fast Deep Learning Correspondence or fDLC, based on the transformer network architecture. The model is trained once on empirically derived synthetic data and then pred
Brain tumor segmentation is a challenging problem in medical image analysis. The goal of brain tumor segmentation is to generate accurate delineation of brain tumor regions with correctly located masks. In recent years, deep learning methods have sho
AI-powered automatic camera scene detection mode is nowadays available in nearly any modern smartphone, though the problem of accurate scene prediction has not yet been addressed by the research community. This paper for the first time carefully defi
Deep learning based Quantitative Susceptibility Mapping (QSM) has shown great potential in recent years, outperforming traditional non-learning approaches in speed and accuracy. However, many of the current deep learning approaches are not data consi