ترغب بنشر مسار تعليمي؟ اضغط هنا

A hypothesis-testing perspective on the G-normal distribution theory

234   0   0.0 ( 0 )
 نشر من قبل Quan Zhou
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The G-normal distribution was introduced by Peng [2007] as the limiting distribution in the central limit theorem for sublinear expectation spaces. Equivalently, it can be interpreted as the solution to a stochastic control problem where we have a sequence of random variables, whose variances can be chosen based on all past information. In this note we study the tail behavior of the G-normal distribution through analyzing a nonlinear heat equation. Asymptotic results are provided so that the tail probabilities can be easily evaluated with high accuracy. This study also has a significant impact on the hypothesis testing theory for heteroscedastic data; we show that even if the data are generated under the null hypothesis, it is possible to cheat and attain statistical significance by sequentially manipulating the error variances of the observations.

قيم البحث

اقرأ أيضاً

68 - Xinjia Chen 2011
In this paper, we have developed new multistage tests which guarantee prescribed level of power and are more efficient than previous tests in terms of average sampling number and the number of sampling operations. Without truncation, the maximum samp ling numbers of our testing plans are absolutely bounded. Based on geometrical arguments, we have derived extremely tight bounds for the operating characteristic function. To reduce the computational complexity for the relevant integrals, we propose adaptive scanning algorithms which are not only useful for present hypothesis testing problem but also for other problem areas.
Efficient automatic protein classification is of central importance in genomic annotation. As an independent way to check the reliability of the classification, we propose a statistical approach to test if two sets of protein domain sequences coming from two families of the Pfam database are significantly different. We model protein sequences as realizations of Variable Length Markov Chains (VLMC) and we use the context trees as a signature of each protein family. Our approach is based on a Kolmogorov--Smirnov-type goodness-of-fit test proposed by Balding et al. [Limit theorems for sequences of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic is a supremum over the space of trees of a function of the two samples; its computation grows, in principle, exponentially fast with the maximal number of nodes of the potential trees. We show how to transform this problem into a max-flow over a related graph which can be solved using a Ford--Fulkerson algorithm in polynomial time on that number. We apply the test to 10 randomly chosen protein domain families from the seed of Pfam-A database (high quality, manually curated families). The test shows that the distributions of context trees coming from different families are significantly different. We emphasize that this is a novel mathematical approach to validate the automatic clustering of sequences in any context. We also study the performance of the test via simulations on Galton--Watson related processes.
362 - Andrew Ying , Wen-Xin Zhou 2019
We investigate the asymptotic behavior of several variants of the scan statistic applied to empirical distributions, which can be applied to detect the presence of an anomalous interval with any length. Of particular interest is Studentized scan stat istic that is preferable in practice. The main ingredients in the proof are Kolmogorovs theorem, a Poisson approximation, and recent technical results by Kabluchko et al (2014).
In this paper new tests for the independence of two high-dimensional vectors are investigated. We consider the case where the dimension of the vectors increases with the sample size and propose multivariate analysis of variance-type statistics for th e hypothesis of a block diagonal covariance matrix. The asymptotic properties of the new test statistics are investigated under the null hypothesis and the alternative hypothesis using random matrix theory. For this purpose we study the weak convergence of linear spectral statistics of central and (conditionally) non-central Fisher matrices. In particular, a central limit theorem for linear spectral statistics of large dimensional (conditionally) non-central Fisher matrices is derived which is then used to analyse the power of the tests under the alternative. The theoretical results are illustrated by means of a simulation study where we also compare the new tests with several alternative, in particular with the commonly used corrected likelihood ratio test. It is demonstrated that the latter test does not keep its nominal level, if the dimension of one sub-vector is relatively small compared to the dimension of the other sub-vector. On the other hand the tests proposed in this paper provide a reasonable approximation of the nominal level in such situations. Moreover, we observe that one of the proposed tests is most powerful under a variety of correlation scenarios.
Consider a normal vector $mathbf{z}=(mathbf{x},mathbf{y})$, consisting of two sub-vectors $mathbf{x}$ and $mathbf{y}$ with dimensions $p$ and $q$ respectively. With $n$ independent observations of $mathbf{z}$ at hand, we study the correlation between $mathbf{x}$ and $mathbf{y}$, from the perspective of the Canonical Correlation Analysis, under the high-dimensional setting: both $p$ and $q$ are proportional to the sample size $n$. In this paper, we focus on the case that $Sigma_{mathbf{x}mathbf{y}}$ is of finite rank $k$, i.e. there are $k$ nonzero canonical correlation coefficients, whose squares are denoted by $r_1geqcdotsgeq r_k>0$. Under the additional assumptions $(p+q)/nto yin (0,1)$ and $p/q otto 1$, we study the sample counterparts of $r_i,i=1,ldots,k$, i.e. the largest k eigenvalues of the sample canonical correlation matrix $S_{mathbf{x}mathbf{x}}^{-1}S_{mathbf{x}mathbf{y}}S_{mathbf{y}mathbf{y}}^{-1}S_{mathbf{y}mathbf{x}}$, namely $lambda_1geqcdotsgeq lambda_k$. We show that there exists a threshold $r_cin(0,1)$, such that for each $iin{1,ldots,k}$, when $r_ileq r_c$, $lambda_i$ converges almost surely to the right edge of the limiting spectral distribution of the sample canonical correlation matrix, denoted by $d_r$. When $r_i>r_c$, $lambda_i$ possesses an almost sure limit in $(d_r,1]$, from which we can recover $r_i$ in turn, thus provide an estimate of the latter in the high-dimensional scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا