ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing the nanoparticle composition of Edvard Munchs The Scream, and implications for paint alteration in iconic early 20th century artworks

64   0   0.0 ( 0 )
 نشر من قبل Barnaby Levin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A major motivation for the scientific study of artworks is to understand their states of preservation and ongoing degradation mechanisms. This enables preservation strategies to be developed for irreplaceable works. Intensely-hued cadmium sulphide (CdS) yellow pigments are of particular interest because these are key to the palettes of many important late 19th and early 20th century masters, including Vincent Van Gogh, Pablo Picasso, Henri Matisse, and Edvard Munch. As these paintings age, their cadmium yellow paints are undergoing severe fading, flaking, and discolouration. These effects are associated with photodegradation, the light-facilitated reactions of CdS with oxygen, moisture, and even the paint binding medium. The use of common optical and X-ray methods to characterize the physical state of the pigment is challenging due to the mixing of the various components of the paint at length scales smaller than their resolution. Here, we present an atomic-scale structural and chemical analysis of the CdS pigment in Edvard Munchs The Scream (c. 1910, Munch Museet), enabled by new electron microscope detector technologies. We show that the CdS pigment consists of clusters of defective nanoparticles ~5-10 nm in diameter. It is known from the modern use of such particles in photocatalysis that they are inherently vulnerable to photodegradation. Chlorine doping and a polytype crystal structure further enhance the sensitivity of the CdS pigment to photodegradation. In addition to The Scream, we have also observed this inherently unstable pigment structure in Henri Matisses Flower Piece (1906, Barnes Foundation). The fundamental understanding of the pigments nanoscale structures and impurities described here can now be used to predict which paintings are most at risk of photooxidation, and guide the most effective preservation strategies for iconic masterpieces.

قيم البحث

اقرأ أيضاً

Condensation of bosons causes spectacular phenomena such as superfluidity or superconductivity. Understanding the nature of the condensed particles is crucial for active control of such quantum phases. Fascinating possibilities emerge from condensate s of light-matter coupled excitations, such as exciton polaritons, photons hybridized with hydrogen-like bound electron-hole pairs. So far, only the photon component has been resolved, while even the mere existence of excitons in the condensed regime has been challenged. Here we trace the matter component of polariton condensates by monitoring intra-excitonic terahertz transitions. We study how a reservoir of optically dark excitons forms and feeds the degenerate state. Unlike atomic gases, the atom-like transition in excitons is dramatically renormalized upon macroscopic ground state population. Our results establish fundamental differences between polariton condensation and photon lasing and open possibilities for coherent control of condensates.
260 - Z. Junhao 2001
Quantum mechanics take the sum of first finite order approximate solutions of time-dependent perturbation to substitute the exact solution. From the point of mathematics, it may be correct only in the convergent region of the time-dependent perturbat ion series. Where is the convergent region of this series? Quantum mechanics did not answer this problem. However it is relative to the question, can we use the Schrodinger equation to describe the transition processes? So it is the most important unsettling problem of physical theory. We find out the time-dependent approximate solution for arbitrary and the exact solution. Then we can prove that: (1) In the neighborhood of the conservation of energy, the series is divergent. The basic error of quantum mechanics is using the sum of the first finite orders approximate solutions to substitute the exact solution in this divergent region. It leads to an infinite error. So the Fermi golden rule is not a mathematically reasonable inference of the. Schrodinger equation (2) The transiton probability per unit time deduced from the exact solution of Schrodinger equation cannot describe the transition processes. This paper is only a prime discussion.
We have calculated surface energies and surface magnetic order of various low-indexed surfaces of monoatomic Fe, Co, and Pt, and binary, ordered FePt, CoPt, and MnPt using density functional theory. Our results for the binary systems indicate that el emental, Pt-covered surfaces are preferred over Fe- and Co-covered and mixed surfaces of the same orientation. The lowest energy orientation for mixed surfaces is the highly coordinated (111) surface. We find Pt-covered (111) surfaces, which can be realized in the L11 structure only, to be lower in energy by about 400 meV/atom compared to the mixed L10 (111) surface. We conclude that this low surface energy stabilizes the L11 structure in small nanoparticles, which is suppressed in bulk alloys, but has been recently synthesized as thin film for CoPt. From the interplay of surface and bulk energies, equilibrium shapes of single-crystalline ordered nanoparticles and crossover sizes between the different orderings can be estimated.
Black phosphorus (BP) has emerged as a direct-bandgap semiconducting material with great application potentials in electronics, photonics, and energy conversion. Experimental characterization of the anisotropic thermal properties of BP, however, is e xtremely challenging due to the lack of reliable and accurate measurement techniques to characterize anisotropic samples that are micrometers in size. Here, we report measurement results of the anisotropic thermal conductivity of bulk BP along three primary crystalline orientations, using the novel time-resolved magneto-optical Kerr effect (TR-MOKE) with enhanced measurement sensitivities. Two-dimensional beam-offset TR-MOKE signals from BP flakes yield the thermal conductivity along the zigzag crystalline direction to be 84 ~ 101 W/(m*K), nearly three times as large as that along the armchair direction (26 ~ 36 W/(m*K)). The through-plane thermal conductivity of BP ranges from 4.3 to 5.5 W/(m*K). The first-principles calculation was performed for the first time to predict the phonon transport in BP both along the in-plane zigzag and armchair directions and along the through-plane direction. This work successfully unveiled the fundamental mechanisms of anisotropic thermal transport along the three crystalline directions in bulk BP, as demonstrated by the excellent agreement between our first-principles-based theoretical predictions and experimental characterizations on the anisotropic thermal conductivities of bulk BP.
The strain state and composition of a 400 nm thick (In,Ga)N layer grown by metal-organic chemical vapor deposition on a GaN template are investigated by spatially integrated x-ray diffraction and cathodoluminescence (CL) spectroscopy as well as by sp atially resolved CL and energy dispersive x-ray analysis. The CL investigations confirm a process of strain relaxation accompanied by an increasing indium content toward the surface of the (In,Ga)N layer, which is known as the compositional pulling effect. Moreover, we identify the strained bottom, unstrained top, and gradually relaxed intermediate region of the (In,Ga)N layer. In addition to an increase of the indium content along the growth direction, the strain relaxation leads to an enhancement of the lateral variations of the indium distribution toward the surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا