ﻻ يوجد ملخص باللغة العربية
We present the determination of stellar parameters and individual elemental abundances for 6 million stars from $sim$8 million low-resolution ($Rsim1800$) spectra from LAMOST DR5. This is based on a modeling approach that we dub $The$ $Data$--$Driven$ $Payne$ ($DD$--$Payne$), which inherits essential ingredients from both {it The Payne} citep{Ting2019} and $The$ $Cannon$ citep{Ness2015}. It is a data-driven model that incorporates constraints from theoretical spectral models to ensure the derived abundance estimates are physically sensible. Stars in LAMOST DR5 that are in common with either GALAH DR2 or APOGEE DR14 are used to train a model that delivers stellar parameters ($T_{rm eff}$, $log g$, $V_{rm mic}$) and abundances for 16 elements (C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, and Ba) when applied to LAMOST spectra. Cross-validation and repeat observations suggest that, for ${rm S/N}_{rm pix}ge 50$, the typical internal abundance precision is 0.03--0.1,dex for the majority of these elements, with 0.2--0.3,dex for Cu and Ba, and the internal precision of $T_{rm eff}$ and $log g$ is better than 30,K and 0.07,dex, respectively. Abundance systematics at the $sim$0.1,dex level are present in these estimates, but are inherited from the high-resolution surveys training labels. For some elements, GALAH provides more robust training labels, for others, APOGEE. We provide flags to guide the quality of the label determination and to identify binary/multiple stars in LAMOST DR5. The abundance catalogs are publicly accessible via href{url}{http://dr5.lamost.org/doc/vac}.
LAMOST DR5 released more than 200,000 low resolution spectra of early-type stars with S/N>50. Searching for metallic-line (Am) stars in such a large database and study of their statistical properties are presented in this paper. Six machine learning
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) started median-resolution spectroscopic (MRS, R$sim$7500) survey since October 2018. The main scientific goals of MRS, including binary stars, pulsators, and other variable stars
Since September 2018, LAMOST starts a new 5-year medium-resolution spectroscopic survey (MRS) using bright/gray nights. We present the scientific goals of LAMOST-MRS and propose a near optimistic strategy of the survey. A complete footprint is also p
We present a data-driven method to estimate absolute magnitudes for O- and B-type stars from the LAMOST spectra, which we combine with {it Gaia} parallaxes to infer distance and binarity. The method applies a neural network model trained on stars wit
Radial velocity (RV) is among the most fundamental physical quantities obtainable from stellar spectra and is rather important in the analysis of time-domain phenomena. The LAMOST Medium-Resolution Survey (MRS) DR7 contains 5 million single-exposure