ﻻ يوجد ملخص باللغة العربية
We present a fully automatic approach to video colorization with self-regularization and diversity. Our model contains a colorization network for video frame colorization and a refinement network for spatiotemporal color refinement. Without any labeled data, both networks can be trained with self-regularized losses defined in bilateral and temporal space. The bilateral loss enforces color consistency between neighboring pixels in a bilateral space and the temporal loss imposes constraints between corresponding pixels in two nearby frames. While video colorization is a multi-modal problem, our method uses a perceptual loss with diversity to differentiate various modes in the solution space. Perceptual experiments demonstrate that our approach outperforms state-of-the-art approaches on fully automatic video colorization. The results are shown in the supplementary video at https://youtu.be/Y15uv2jnK-4
This paper presents the first end-to-end network for exemplar-based video colorization. The main challenge is to achieve temporal consistency while remaining faithful to the reference style. To address this issue, we introduce a recurrent framework t
We propose a hybrid recurrent Video Colorization with Hybrid Generative Adversarial Network (VCGAN), an improved approach to video colorization using end-to-end learning. The VCGAN addresses two prevalent issues in the video colorization domain: Temp
In this paper, we tackle the problem of colorization of grayscale videos to reduce bandwidth usage. For this task, we use some colored keyframes as reference images from the colored version of the grayscale video. We propose a model that extracts key
There is more to images than their objective physical content: for example, advertisements are created to persuade a viewer to take a certain action. We propose the novel problem of automatic advertisement understanding. To enable research on this pr
In this work, we propose the use of large set of unlabeled images as a source of regularization data for learning robust visual representation. Given a visual model trained by a labeled dataset in a supervised fashion, we augment our training samples