ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery and analysis of a ULX nebula in NGC 3521

138   0   0.0 ( 0 )
 نشر من قبل Kristhell Marisol L\\'opez M.Sc.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Very Large Telescope/X-shooter and Chandra X-ray observatory/ACIS observations of the ULX [SST2011] J110545.62+000016.2 in the galaxy NGC 3521. The source identified as a candidate near-infrared counterpart to the ULX in our previous study shows an emission line spectrum of numerous recombination and forbidden lines in the visible and near-infrared spectral regime. The emission from the candidate counterpart is spatially extended ($sim$ 34 pc) and appears to be connected with an adjacent H II region, located $sim$ 138 pc to the NE. The measured velocities of the emission lines confirm that both the candidate counterpart and H II region reside in NGC 3521. The intensity ratios of the emission lines from the ULX counterpart show that the line emission originates from the combined effect of shock and photoionisation of low metallicity (12 + log (O/H) = 8.19 $pm$ 0.11) gas. Unfortunately, there is no identifiable spectral signature directly related to the photosphere of the mass-donor star in our spectrum. From the archival Chandra data, we derive the X-ray luminosity of the source in the 0.3-7 keV range to be (1.9 $pm$ 0.8) $times$ 10$^{40}$ erg cm$^{-2}$ s$^{-1}$, almost a factor of four higher than what is previously reported.

قيم البحث

اقرأ أيضاً

72 - M. Heida , R.M. Lau , B. Davies 2019
SN2010da/NGC 300 ULX-1 was first detected as a supernova impostor in May 2010 and was recently discovered to be a pulsating ultraluminous X-ray source. In this letter, we present VLT/X-shooter spectra of this source obtained in October 2018, covering the wavelength range 350-2300 nm. The $J$- and $H$-bands clearly show the presence of a red supergiant donor star that is best matched by a MARCS stellar atmosphere with $T_{rm eff} = 3650 - 3900$ K and $log(L_{rm bol}/L_{odot}) = 4.25pm0.10$, which yields a stellar radius $R = 310 pm 70 R_{odot}$. To fit the full spectrum, two additional components are required: a blue excess that can be fitted either by a hot blackbody (T $gtrsim 20,000$ K) or a power law (spectral index $alpha approx 4$) and is likely due to X-ray emission reprocessed in the outer accretion disk or the donor star; and a red excess that is well fitted by a blackbody with a temperature of $sim 1100$ K, and is likely due to warm dust in the vicinity of SN2010da. The presence of a red supergiant in this system implies an orbital period of at least 0.8-2.1 years, assuming Roche lobe overflow. Given the large donor-to-compact object mass ratio, orbital modulations of the radial velocity of the red supergiant are likely undetectable. However, the radial velocity amplitude of the neutron star is large enough (up to 40-60 km s$^{-1}$) to potentially be measured in the future, unless the system is viewed at a very unfavorable inclination.
We report the discovery of a third ULX in NGC 925 (ULX-3), detected in November 2017 by Chandra at a luminosity of $L_{rm X} = (7.8pm0.8)times10^{39}$ erg s$^{-1}$. Examination of archival data for NGC 925 reveals that ULX-3 was detected by Swift at a similarly high luminosity in 2011, as well as by XMM-Newton in January 2017 at a much lower luminosity of $L_{rm X} = (3.8pm0.5)times10^{38}$ erg s$^{-1}$. With an additional Chandra non-detection in 2005, this object demonstrates a high dynamic range of flux of factor >26. In its high-luminosity detections, ULX-3 exhibits a hard power-law spectrum with $Gamma=1.6pm0.1$, whereas the XMM-Newton detection is slightly softer, with $Gamma=1.8^{+0.2}_{-0.1}$ and also well-fitted with a broadened disc model. The long-term light curve is sparsely covered and could be consistent either with the propeller effect or with a large-amplitude superorbital period, both of which are seen in ULXs, in particular those with neutron star accretors. Further systematic monitoring of ULX-3 will allow us to determine the mechanism by which ULX-3 undergoes its extreme variability and to better understand the accretion processes of ULXs.
NGC 300 ULX1 is the fourth to be discovered in the class of the ultra-luminous X-ray pulsars. Pulsations from NGC 300 ULX1 were discovered during simultaneous XMM-Newton / NuSTAR observations in Dec. 2016. The period decreased from 31.71 s to 31.54 s within a few days, with a spin-up rate of -5.56 x 10^{-7} s s^{-1}, likely one of the largest ever observed from an accreting neutron star. Archival Swift and NICER observations revealed that the period decreased exponentially from ~45 s to ~17.5 s over 2.3 years. The pulses are highly modulated with a pulsed fraction strongly increasing with energy and reaching nearly 80% at energies above 10keV. The X-ray spectrum is described by a power-law and a disk black-body model, leading to a 0.3-30 keV unabsorbed luminosity of 4.7 x 10^{39} erg s^{-1}. The spectrum from an archival XMM-Newton observation of 2010 can be explained by the same model, however, with much higher absorption. This suggests, that the intrinsic luminosity did not change much since that epoch. NGC 300 ULX1 shares many properties with supergiant high mass X-ray binaries, however, at an extreme accretion rate.
131 - Erwan Quintin 2021
We report here the discovery of NGC 7793 ULX-4, a new transient ultraluminous X-ray source (ULX) in NGC 7793, a spiral galaxy already well known for harbouring several ULXs. This new source underwent an outburst in 2012, when it was detected by texti t{XMM-Newton} and the textit{Swift} X-ray telescope. The outburst reached a peak luminosity of 3.4$times 10^{39}$ erg s$^{-1}$ and lasted for about 8 months, after which the source went below a luminosity of $10^{37}$ erg s$^{-1}$; previous textit{Chandra} observations constrain the low-state luminosity below $sim$ 2$times 10^{36}$ erg s$^{-1}$, implying a variability of at least a factor 1000. We propose four possible optical counterparts, found in archival HST observations of the galaxy. A pulsation in the textit{XMM-Newton} signal was found at 2.52 Hz, with a significance of $sim3.4,sigma$, and an associated spin-up of $dot{f} = 3.5times10^{-8}$ Hz.s$^{-1}$. NGC 7793 is therefore the first galaxy to host more than one pulsating ULX.
Based on phase-resolved broadband spectroscopy using $XMM$-$Newton$ and $NuSTAR$, we report on a potential cyclotron resonant scattering feature at $E sim 13$ keV in the pulsed spectrum of the recently discoverd ULX pulsar NGC 300 ULX1. If this inter pretation is correct, the implied magnetic field of the central neutron star is $B sim 10^{12}$ G (assuming scattering off electrons), similar to that estimated from the observed spin-up of the star, and also similar to known Galactic X-ray pulsars. We discuss the implications of this result for the connection between NGC 300 ULX1 and the other known ULX pulsars, particularly in light of the recent discovery of a likely proton Cyclotron line in another ULX, M51 ULX-8.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا