ترغب بنشر مسار تعليمي؟ اضغط هنا

PingPong: Packet-Level Signatures for Smart Home Device Events

73   0   0.0 ( 0 )
 نشر من قبل Rahmadi Trimananda
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Smart home devices are vulnerable to passive inference attacks based on network traffic, even in the presence of encryption. In this paper, we present PINGPONG, a tool that can automatically extract packet-level signatures for device events (e.g., light bulb turning ON/OFF) from network traffic. We evaluated PINGPONG on popular smart home devices ranging from smart plugs and thermostats to cameras, voice-activated devices, and smart TVs. We were able to: (1) automatically extract previously unknown signatures that consist of simple sequences of packet lengths and directions; (2) use those signatures to detect the devices or specific events with an average recall of more than 97%; (3) show that the signatures are unique among hundreds of millions of packets of real world network traffic; (4) show that our methodology is also applicable to publicly available datasets; and (5) demonstrate its robustness in different settings: events triggered by local and remote smartphones, as well as by homeautomation systems.



قيم البحث

اقرأ أيضاً

A significant amount of research has been conducted in order to make home appliances more efficient in terms of energy usage. Various techniques have been designed and implemented in order to control the power demand and supply. This paper encompasse s reviews of different research works on a wide range of energy management techniques for smart homes aimed at reducing energy consumption and minimizing energy wastage. The idea of smart home is elaborated followed by a review of existing energy management methods.
172 - I. Khan , A. Mahmood , N. Javaid 2013
We present a detailed review of various Home Energy Management Schemes (HEM,s). HEM,s will increase savings, reduce peak demand and Pto Average Ratio (PAR). Among various applications of smart grid technologies, home energy management is probably the most important one to be addressed. Various steps have been taken by utilities for efficient energy consumption.New pricing schemes like Time of Use (ToU), Real Time Pricing (RTP), Critical Peak Pricing (CPP), Inclining Block Rates (IBR) etc have been been devised for future smart grids.Home appliances and/or distributed energy resources coordination (Local Generation) along with different pricing schemes leads towards efficient energy consumption. This paper addresses various communication and optimization based residential energy management schemes and different communication and networking technologies involved in these schemes.
117 - I. Khan , N. Javaid , M. N. Ullah 2013
In this paper we present a systematic review of various home energy management (HEM) schemes. Employment of home energy management programs will make the electricity consumption smarter and more efficient. Advantages of HEM include, increased savings for consumers as well as utilities, reduced peak to average ratio (PAR) and peak demand. Where there are numerous applications of smart grid technologies, home energy management is probably the most important one to be addressed. Utilities across the globe have taken various steps for efficient consumption of electricity. New pricing schemes like, Real Time Pricing (RTP), Time of Use (ToU), Inclining Block Rates (IBR), Critical Peak Pricing (CPP) etc, have been proposed for smart grid. Distributed Energy Resources (DER) (local generation) and/or home appliances coordination along with different tariff schemes lead towards efficient consumption of electricity. This work also discusses a HEM systems general architecture and various challenges in implementation of this architecture in smart grid.
Blockchain has revolutionized how transactions are conducted by ensuring secure and auditable peer-to-peer coordination. This is due to both the development of decentralization, and the promotion of trust among peers. Blockchain and fog computing are currently being evaluated as potential support for software and a wide spectrum of applications, ranging from banking practices and digital transactions to cyber-physical systems. These systems are designed to work in highly complex, sometimes even adversarial, environments, and to synchronize heterogeneous machines and manufacturing facilities in cyber computational space, and address critical challenges such as computational complexity, security, trust, and data management. Coupling blockchain with fog computing technologies has the potential to identify and overcome these issues. Thus, this paper presents the knowledge of blockchain and fog computing required to improve cyber-physical systems in terms of quality-of-service, data storage, computing and security.
The popularity of the Internet of Things (IoT) devices makes it increasingly important to be able to fingerprint them, for example in order to detect if there are misbehaving or even malicious IoT devices in ones network. The aim of this paper is to provide a systematic categorisation of machine learning augmented techniques that can be used for fingerprinting IoT devices. This can serve as a baseline for comparing various IoT fingerprinting mechanisms, so that network administrators can choose one or more mechanisms that are appropriate for monitoring and maintaining their network. We carried out an extensive literature review of existing papers on fingerprinting IoT devices -- paying close attention to those with machine learning features. This is followed by an extraction of important and comparable features among the mechanisms outlined in those papers. As a result, we came up with a key set of terminologies that are relevant both in the fingerprinting context and in the IoT domain. This enabled us to construct a framework called IDWork, which can be used for categorising existing IoT fingerprinting mechanisms in a way that will facilitate a coherent and fair comparison of these mechanisms. We found that the majority of the IoT fingerprinting mechanisms take a passive approach -- mainly through network sniffing -- instead of being intrusive and interactive with the device of interest. Additionally, a significant number of the surveyed mechanisms employ both static and dynamic approaches, in order to benefit from complementary features that can be more robust against certain attacks such as spoofing and replay attacks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا