ترغب بنشر مسار تعليمي؟ اضغط هنا

Cohesive self-organization of mobile microrobotic swarms

324   0   0.0 ( 0 )
 نشر من قبل Yunus Alapan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mobile microrobots are envisioned to be useful in a wide range of high-impact applications, many of which requiring cohesive group formation to maintain self-bounded swarms in the absence of confining boundaries. Cohesive group formation relies on a balance between attractive and repulsive interactions between agents. We found that a balance of magnetic dipolar attraction and multipolar repulsion between self-assembled particle chain microrobots enable their self-organization into cohesive clusters. Self-organized microrobotic clusters translate above a solid substrate via a hydrodynamic self-propulsion mechanism. Cluster velocity increases with cluster size, resulting from collective hydrodynamic effects. Clustering is promoted by the strength of cohesive interactions and hindered by heterogeneities of individual microrobots. Scalability of cohesive interactions allows formation of larger groups, whose internal spatiotemporal organization undergoes a transition from solid-like ordering to liquid-like behavior with increasing cluster size. Our work elucidates the dynamics of clustering under cohesive interactions, and presents an approach for addressing operation of microrobots as localized teams.

قيم البحث

اقرأ أيضاً

Collective control of mobile microrobotic swarms is indispensable for their potential high-impact applications in targeted drug delivery, medical diagnostics, parallel micromanipulation, and environmental sensing and remediation. Lack of on-board com putational and sensing capabilities in current microrobotic systems necessitates use of physical interactions among individual microrobots for local physical communication and cooperation. Here, we show that mobile microrobotic swarms with well-defined collective behavior can be designed by engineering magnetic interactions among individual units. Microrobots, consisting of a linear chain of self-assembled magnetic microparticles, locomote on surfaces in response to a precessing magnetic field. Control over the direction of precessing magnetic field allows engineering attractive and repulsive interactions among microrobots and, thus, collective order with well-defined spatial organization and parallel operation over macroscale distances (~1 cm). These microrobotic swarms can be guided through confined spaces, while preserving microrobot morphology and function. These swarms can further achieve directional transport of large cargoes on surfaces and small cargoes in bulk fluids. Described design approach, exploiting physical interactions among individual robots, enables facile and rapid formation of self-organized and reconfigurable microrobotic swarms with programmable collective order.
Scale-free outbursts of activity are commonly observed in physical, geological, and biological systems. The idea of self-organized criticality (SOC), introduced back in 1987 by Bak, Tang and Wiesenfeld suggests that, under certain circumstances, natu ral systems can seemingly self-tune to a critical state with its concomitant power-laws and scaling. Theoretical progress allowed for a rationalization of how SOC works by relating its critical properties to those of a standard non-equilibrium second-order phase transition that separates an active state in which dynamical activity reverberates indefinitely, from an absorbing or quiescent state where activity eventually ceases. Here, we briefly review these ideas as well as a recent closely-related concept: self-organized bistability (SOB). In SOB, the very same type of feedback operates in a system characterized by a discontinuos phase transition, which has no critical point but instead presents bistability between active and quiescent states. SOB also leads to scale-invariant avalanches of activity but, in this case, with a different type of scaling and coexisting with anomalously large outbursts. Moreover, SOB explains experiments with real sandpiles more closely than SOC. We review similarities and differences between SOC and SOB by presenting and analyzing them under a common theoretical framework, covering recent results as well as possible future developments. We also discuss other related concepts for imperfect self-organization such as self-organized quasi-criticality and self-organized collective oscillations, of relevance in e.g. neuroscience, with the aim of providing an overview of feedback mechanisms for self-organization to the edge of a phase transition.
The generation of two non-identical membrane compartments via exchange of vesicles is considered to require two types of vesicles specified by distinct cytosolic coats that selectively recruit cargo and two membrane-bound SNARE pairs that specify fus ion and differ in their affinities for each type of vesicles. The mammalian Golgi complex is composed of 6-8 non-identical cisternae that undergo gradual maturation and replacement yet features only two SNARE pairs. We present a model that explains how the distinct composition of Golgi cisternae can be generated with two and even a single SNARE pair and one vesicle coat. A decay of active SNARE concentration in aging cisternae provides the seed for a cis > trans SNARE gradient that generates the predominantly retrograde vesicle flux which further enhances the gradient. This flux in turn yields the observed inhomogeneous steady-state distribution of Golgi enzymes, which compete with each other and with the SNAREs for incorporation into transport vesicles. We show analytically that the steady state SNARE concentration decays exponentially with the cisterna number. Numerical solutions of rate equations reproduce the experimentally observed SNARE gradients, overlapping enzyme peaks in cis, medial and trans and the reported change in vesicle nature across Golgi: Vesicles originating from younger cisternae mostly contain Golgi enzymes and SNAREs enriched in these cisternae and extensively recycle through the Endoplasmic Reticulum (ER), while the other subpopulation of vesicles contains Golgi proteins prevalent in older cisternae and hardly reaches the ER.
We systematically explore the self-assembly of semi-flexible polymers in deformable spherical confinement across a wide regime of chain stiffness, contour lengths and packing fractions by means of coarse-grained molecular dynamics simulations. Compli ant, DNA-like filaments are found to undergo a continuous crossover from two distinct surface-ordered quadrupolar states, both characterized by tetrahedral patterns of topological defects, to either longitudinal or latitudinal bipolar structures with increasing polymer concentrations. These transitions, along with the intermediary arrangements that they involve, may be attributed to the combination of an orientational wetting phenomenon with subtle density- and contour-length-dependent variations in the elastic anisotropies of the corresponding liquid crystal phases. Conversely, the organization of rigid, microtubule-like polymers evidences a progressive breakdown of continuum elasticity theory as chain dimensions become comparable to the equilibrium radius of the encapsulating membrane. In this case, we observe a gradual shift from prolate, tactoid-like morphologies to oblate, erythrocyte-like structures with increasing contour lengths, which is shown to arise from the interplay between nematic ordering, polymer and membrane buckling. We further provide numerical evidence of a number of yet-unidentified, self-organized states in such confined systems of stiff achiral filaments, including spontaneous spiral smectic assemblies, faceted polyhedral and twisted bundle-like arrangements. Our results are quantified through the introduction of several order parameters and an unsupervised learning scheme for the localization of surface topological defects, and are in excellent agreement with field-theoretical predictions as well as classical elastic theories of thin rods and spherical shells.
Inverse patchy colloids are nano- to micro-scale particles with a surface divided into differently charged regions. This class of colloids combines directional, selective bonding with a relatively simple particle design: owing to the competitive inte rplay between the orientation-dependent attraction and repulsion -- induced by the interactions between like/oppositely charged areas -- experimentally accessible surface patterns are complex enough to favor the stabilization of specific structures of interest. Most important, the behavior of heterogeneously charged units can be ideally controlled by means of external parameters, such as the pH and the salt concentration. We present a concise review about this class of systems, spanning the range from the synthesis of model inverse patchy particles to their self-assembly, covering their coarse-grained modeling and the related numerical/analytical treatments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا