ﻻ يوجد ملخص باللغة العربية
The notion of semi-random sources, also known as Santha-Vazirani (SV) sources, stands for a sequence of n bits, where the dependence of the ith bit on the previous i-1 bits is limited for every $iin[n]$. If the dependence of the ith bit on the remaining n-1 bits is limited, then this is a strong SV-source. Even the strong SV-sources are known not to admit (universal) deterministic extractors, but they have seeded extractors, as their min-entropy is $Omega(n)$. It is intuitively obvious that strong SV-sources are more than just high-min-entropy sources, and this work explores the intuition. Deterministic condensers are known not to exist for general high-min-entropy sources, and we construct for any constants $epsilon, delta in (0,1)$ a deterministic condenser that maps n bits coming from a strong SV-source with bias at most $delta$ to $Omega(n)$ bits of min-entropy rate at least $1-epsilon$. In conclusion we observe that deterministic condensers are closely related to very strong extractors - a proposed strengthening of the notion of strong (seeded) extractors: in particular, our constructions can be viewed as very strong extractors for the family of strong Santha-Vazirani distributions. The notion of very strong extractors requires that the output remains unpredictable even to someone who knows not only the seed value (as in the case of strong extractors), but also the extractors outputs corresponding to the same input value with each of the preceding seed values (say, under the lexicographic ordering). Very strong extractors closely resemble the original notion of SV-sources, except that the bits must satisfy the unpredictability requirement only on average.
A Santha-Vazirani (SV) source is a sequence of random bits where the conditional distribution of each bit, given the previous bits, can be partially controlled by an adversary. Santha and Vazirani show that deterministic randomness extraction from th
We study the problem of extracting random bits from weak sources that are sampled by algorithms with limited memory. This model of small-space sources was introduced by Kamp, Rao, Vadhan and Zuckerman (STOC06), and falls into a line of research initi
We describe a construction of explicit affine extractors over large finite fields with exponentially small error and linear output length. Our construction relies on a deep theorem of Deligne giving tight estimates for exponential sums over smooth varieties in high dimensions.
A pseudo-deterministic algorithm is a (randomized) algorithm which, when run multiple times on the same input, with high probability outputs the same result on all executions. Classic streaming algorithms, such as those for finding heavy hitters, app
Given a DNF formula on n variables, the two natural size measures are the number of terms or size s(f), and the maximum width of a term w(f). It is folklore that short DNF formulas can be made narrow. We prove a converse, showing that narrow formulas