ﻻ يوجد ملخص باللغة العربية
Over the past two decades, advances in computational algorithms have revealed a curious property of the two-dimensional Hubbard model (and related theories) with hole doping: the presence of close-in-energy competing ground states that display very different physical properties. On the one hand, there is a complicated state exhibiting intertwined spin, charge, and pair density wave orders. We call this `type A. On the other hand, there is a uniform d-wave superconducting state that we denote as `type B. We advocate, with the support of both microscopic theoretical calculations and experimental data, dividing the high-temperature cuprate superconductors into two corresponding families, whose properties reflect either the type A or type B ground states at low temperatures. We review the anomalous properties of the pseudogap phase that led us to this picture, and present a modern perspective on the role that umklapp scattering plays in these phenomena in the type B materials. This reflects a consistent framework that has emerged over the last decade, in which Mott correlations at weak coupling drive the formation of the pseudogap. We discuss this development, recent theory and experiments, and open issues.
The nature of the pseudogap phase of cuprates remains a major puzzle. One of its new signatures is a large negative thermal Hall conductivity $kappa_{rm xy}$, which appears for dopings $p$ below the pseudogap critical doping $p^*$, but whose origin i
The resonating valence bond spin liquid model for the underdoped cuprates has as an essential element, the emergence of a pseudogap. This new energy scale introduces asymmetry in the quasiparticle density of states because it is associated with the
Angle-resolved photoemission on underdoped La$_{1.895}$Sr$_{0.105}$CuO$_4$ reveals that in the pseudogap phase, the dispersion has two branches located above and below the Fermi level with a minimum at the Fermi momentum. This is characteristic of th
We report characterization results by energy dispersive x-ray analysis and AC-susceptibility for a statistically relevant number of single layer Bi-cuprate single crystals. We show that the two structurally quite different modifications of the single
Cuprate high-T_c superconductors on the Mott-insulating side of optimal doping (with respect to the highest T_cs) exhibit enigmatic behavior in the non-superconducting state. Near optimal doping the transport and spectroscopic properties are unlike t