ﻻ يوجد ملخص باللغة العربية
Bayesian parametric analytic continuation (BPAC) is proposed for the analytic continuation of noisy imaginary-time Greens function data as, e.g., obtained by continuous-time quantum Monte Carlo simulations (CTQMC). Within BPAC, the spectral function is inferred from a suitable set of parametrized basis functions. Bayesian model comparison then allows to assess the reliability of different parametrizations. The required evidence integrals of such a model comparison are determined by nested sampling. Compared to the maximum entropy method (MEM), routinely used for the analytic continuation of CTQMC data, the presented approach allows to infer whether the data support specific structures of the spectral function. We demonstrate the capability of BPAC in terms of CTQMC data for an Anderson impurity model (AIM) that shows a generalized Kondo scenario and compare the BPAC reconstruction to the MEM as well as to the spectral function obtained from the real-time fork tensor product state impurity solver where no analytic continuation is required. Furthermore, we present a combination of MEM and BPAC and its application to an AIM arising from the ab initio treatment of SrVO$_3$.
We present a new charge self-consistent scheme combining Density Functional and Dynamical Mean Field Theory, which uses Greens function of multiple scattering-type. In this implementation the many-body effects are incorporated into the Kohn-Sham iter
We present SpM, a sparse modeling tool for the analytic continuation of imaginary-time Greens function, licensed under GNU General Public License version 3. In quantum Monte Carlo simulation, dynamic physical quantities such as single-particle and ma
Via a unified geometric approach, a class of generalized trigonometric functions with two parameters are analytically extended to maximal domains on which they are univalent. Some consequences are deduced concerning commutation with rotation, continu
A method for analytic continuation of imaginary-time correlation functions (here obtained in quantum Monte Carlo simulations) to real-frequency spectral functions is proposed. Stochastically sampling a spectrum parametrized by a large number of delta
We present the Python package ana_cont for the analytic continuation of fermionic and bosonic many-body Greens functions by means of either the Pade approximants or the maximum entropy method. The determination of hyperparameters and the implementati