ﻻ يوجد ملخص باللغة العربية
We analyse in this work the propagation and geoeffectiveness of four successive coronal mass ejections (CMEs) that erupted from the Sun during 21--23 May 2013 and that were detected in interplanetary space by the Wind and/or STEREO-A spacecraft. All these CMEs featured critical aspects for understanding so-called problem space weather storms at Earth. In the first three events a limb CMEs resulted in moderately geoeffective in-situ structures at their target location in terms of the disturbance storm time (Dst) index (either measured or estimated). The fourth CME, which also caused a moderate geomagnetic response, erupted from close to the disc centre as seen from Earth, but it was not visible in coronagraph images from the spacecraft along the Sun--Earth line and appeared narrow and faint from off-angle viewpoints. Making the correct connection between CMEs at the Sun and their in-situ counterparts is often difficult for problem storms. We investigate these four CMEs using multiwavelength and multipoint remote-sensing observations (extreme ultraviolet, white light, and radio), aided by 3D heliospheric modelling, in order to follow their propagation in the corona and in interplanetary space and to assess their impact at 1 AU. Finally, we emphasise the difficulties in forecasting moderate space weather effects provoked by problematic and ambiguous events and the importance of multispacecraft data for observing and modelling problem storms.
Aims. The magnetic field of coronal mass ejections (CMEs) determines their structure, evolution, and energetics, as well as their geoeffectiveness. However, we currently lack routine diagnostics of the near-Sun CME magnetic field, which is crucial fo
Forecasting the in situ properties of coronal mass ejections (CMEs) from remote images is expected to strongly enhance predictions of space weather, and is of general interest for studying the interaction of CMEs with planetary environments. We study
Aims. We present observations of the first coronal mass ejection (CME) observed at the Solar Orbiter spacecraft on April 19, 2020, and the associated Forbush decrease (FD) measured by its High Energy Telescope (HET). This CME is a multispacecraft eve
The Coronal Multichannel Polarimeter (CoMP) measures not only the polarization of coronal emission, but also the full radiance profiles of coronal emission lines. For the first time, CoMP observations provide high-cadence image sequences of the coron
The scenario of twin coronal mass ejections (CMEs), i.e., a fast and wide primary CME (priCME) preceded by previous CMEs (preCMEs), has been found to be favorable to a more efficient particle acceleration in large solar energetic particle (SEP) event