ﻻ يوجد ملخص باللغة العربية
Uncertainty relation is one of the fundamental principle in quantum mechanics and plays an important role in quantum information science. We experimentally test the error-disturbance uncertainty relation (EDR) with continuous variables for Gaussian states. Two conjugate continuous-variable observables, amplitude and phase quadratures of an optical mode, are measured simultaneously by using a heterodyne measurement system. The EDR with continuous variables for a coherent state, a squeezed state and a thermal state are verified experimentally. Our experimental results demonstrate that Heisenbergs EDR with continuous variables is violated, yet Ozawas and Branciards EDR with continuous variables are validated.
Heisenbergs original uncertainty relation is related to measurement effect, which is different from the preparation uncertainty relation. However, it has been shown that Heisenbergs error-disturbance uncertainty relation can be violated in some cases
The uncertainty relation lies at the heart of quantum theory and behaves as a non-classical constraint on the indeterminacies of incompatible observables in a system. In the literature, many experiments have been devoted to the test of the uncertaint
While the slogan no measurement without disturbance has established itself under the name Heisenberg effect in the consciousness of the scientifically interested public, a precise statement of this fundamental feature of the quantum world has remaine
Incompatible observables can be approximated by compatible observables in joint measurement or measured sequentially, with constrained accuracy as implied by Heisenbergs original formulation of the uncertainty principle. Recently, Busch, Lahti, and W
In quantum physics, measurement error and disturbance were first naively thought to be simply constrained by the Heisenberg uncertainty relation. Later, more rigorous analysis showed that the error and disturbance satisfy more subtle inequalities. Sever