ﻻ يوجد ملخص باللغة العربية
We present a study of the upper critical field of the newly discovered heavy fermion superconductor UTe$_2$ by magnetoresistivity measurements in pulsed magnetic fields up to 60~T and static magnetic fields up to 35~T. We show that superconductivity survives up to the metamagnetic transition at $H_{rm m} approx 35$~T at low temperature. Above $H_{rm m}$ superconductivity is suppressed. At higher temperature superconductivity is enhanced under magnetic field leading to reentrance of superconductivity or an almost temperature independent increase of $H_{rm c2}$. By studying the angular dependence of the upper critical field close to the $b$ axis (hard magnetization axis) we show that the maximum of the reentrant superconductivity temperature is depinned from the metamagnetic field. A key ingredient for the field-reinforcement of superconductivity on approaching $H_{rm m}$ appears to be an immediate interplay with magnetic fluctuations and a possible Fermi-surface reconstruction.
We have studied the magnetization of the recently discovered heavy fermion superconductor UTe$_2$ up to 56 T in pulsed-magnetic fields. A first-order metamagnetic transition has been clearly observed at $H_{rm m}$ =34.9 T when the magnetic field $H$
We report first-principles and strongly-correlated calculations of the newly-discovered heavy fermion superconductor UTe$_2$. Our analyses reveal three key aspects of its magnetic, electronic, and superconducting properties, that include: (1) a two-l
Inelastic-neutron-scattering measurements were performed on a single crystal of the heavy-fermion paramagnet UTe$_2$ above its superconducting temperature. We confirm the presence of antiferromagnetic fluctuations with the incommensurate wavevector $
The crystalline electric field (CEF) energy level scheme of the heavy fermion superconductor CeCoIn_5 has been determined by means of inelastic neutron scattering (INS). Peaks observed in the INS spectra at 8 meV and 27 meV with incident neutron ener
We report measurements of low-temperature specific heat on the 4f^2-based heavy-fermion superconductor PrOs4Sb12. In magnetic fields above 4.5 T in the normal state, distinct anomalies are found which demonstrate the existence of a field-induced orde