ﻻ يوجد ملخص باللغة العربية
We show that the classical equations of motion for a particle on three dimensional fuzzy space and on the fuzzy sphere are underpinned by a natural Lorentz geometry. From this geometric perspective, the equations of motion generally correspond to forced geodesic motion, but for an appropriate choice of noncommutative dynamics, the force is purely noncommutative in origin and the underpinning Lorentz geometry some standard space-time with, in general, non-commutatuve corrections to the metric. For these choices of the noncommutative dynamics the commutative limit therefore corresponds to geodesic motion on this standard space-time. We identify these Lorentz geometries to be a Minkowski metric on $mathbb{R}^4$ and $mathbb{R} times S ^2$ in the cases of a free particle on three dimensional fuzzy space ($mathbb{R}^3_star$) and the fuzzy sphere ($S^2_star$), respectively. We also demonstrate the equivalence of the on-shell dynamics of $S^2_star$ and a relativistic charged particle on the commutative sphere coupled to the background magnetic field of a Dirac monopole.
We derive the path integral action for a particle moving in three dimensional fuzzy space. From this we extract the classical equations of motion. These equations have rather surprising and unconventional features: They predict a cut-off in energy, a
Classical point-particle relativistic lagrangians are constructed that generate the momentum-velocity and dispersion relations for quantum wave packets in Lorentz-violating effective field theory.
We generalize the coset procedure of homogeneous spacetimes in (pseudo-)Riemannian geometry to non-Lorentzian geometries. These are manifolds endowed with nowhere vanishing invertible vielbeins that transform under local non-Lorentzian tangent space
A method is presented for deducing classical point-particle Lagrange functions corresponding to a class of quartic dispersion relations. Applying this to particles violating Lorentz symmetry in the minimal Standard-Model Extension leads to a variety
The current paper is dedicated to determining perturbative expansions for Lagrangians describing classical, relativistic, pointlike particles subject to Lorentz violation parameterized by the nonminimal Standard-Model Extension (SME). An iterative te