ترغب بنشر مسار تعليمي؟ اضغط هنا

Incorporating Weisfeiler-Leman into algorithms for group isomorphism

69   0   0.0 ( 0 )
 نشر من قبل Peter Brooksbank
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we combine many of the standard and more recent algebraic techniques for testing isomorphism of finite groups (GpI) with combinatorial techniques that have typically been applied to Graph Isomorphism. In particular, we show how to combine several state-of-the-art GpI algorithms for specific group classes into an algorithm for general GpI, namely: composition series isomorphism (Rosenbaum-Wagner, Theoret. Comp. Sci., 2015; Luks, 2015), recursively-refineable filters (Wilson, J. Group Theory, 2013), and low-genus GpI (Brooksbank-Maglione-Wilson, J. Algebra, 2017). Recursively-refineable filters -- a generalization of subgroup series -- form the skeleton of this framework, and we refine our filter by building a hypergraph encoding low-genus quotients, to which we then apply a hypergraph variant of the k-dimensional Weisfeiler-Leman technique. Our technique is flexible enough to readily incorporate additional hypergraph invariants or additional characteristic subgroups.



قيم البحث

اقرأ أيضاً

The $k$-dimensional Weisfeiler-Leman procedure ($k$-WL), which colors $k$-tuples of vertices in rounds based on the neighborhood structure in the graph, has proven to be immensely fruitful in the algorithmic study of Graph Isomorphism. More generally , it is of fundamental importance in understanding and exploiting symmetries in graphs in various settings. Two graphs are $k$-WL-equivalent if the $k$-dimensional Weisfeiler-Leman procedure produces the same final coloring on both graphs. 1-WL-equivalence is known as fractional isomorphism of graphs, and the $k$-WL-equivalence relation becomes finer as $k$ increases. We investigate to what extent standard graph parameters are preserved by $k$-WL-equivalence, focusing on fractional graph packing numbers. The integral packing numbers are typically NP-hard to compute, and we discuss applicability of $k$-WL-invariance for estimating the integrality gap of the LP relaxation provided by their fractional counterparts.
As it is well known, the isomorphism problem for vertex-colored graphs with color multiplicity at most 3 is solvable by the classical 2-dimensional Weisfeiler-Leman algorithm (2-WL). On the other hand, the prominent Cai-Furer-Immerman construction sh ows that even the multidimensional version of the algorithm does not suffice for graphs with color multiplicity 4. We give an efficient decision procedure that, given a graph $G$ of color multiplicity 4, recognizes whether or not $G$ is identifiable by 2-WL, that is, whether or not 2-WL distinguishes $G$ from any non-isomorphic graph. In fact, we solve the much more general problem of recognizing whether or not a given coherent configuration of maximum fiber size 4 is separable. This extends our recognition algorithm to graphs of color multiplicity 4 with directed and colored edges. Our decision procedure is based on an explicit description of the class of graphs with color multiplicity 4 that are not identifiable by 2-WL. The Cai-Furer-Immerman graphs of color multiplicity 4 distinctly appear here as a natural subclass, which demonstrates that the Cai-Furer-Immerman construction is not ad hoc. Our classification reveals also other types of graphs that are hard for 2-WL. One of them arises from patterns known as $(n_3)$-configurations in incidence geometry.
In recent years, we have seen several approaches to the graph isomorphism problem based on generic mathematical programming or algebraic (Grobner basis) techniques. For most of these, lower bounds have been established. In fact, it has been shown tha t the pairs of nonisomorphic CFI-graphs (introduced by Cai, Furer, and Immerman in 1992 as hard examples for the combinatorial Weisfeiler-Leman algorithm) cannot be distinguished by these mathematical algorithms. A notable exception were the algebraic algorithms over the field GF(2), for which no lower bound was known. Another, in some way even stronger, approach to graph isomorphism testing is based on solving systems of linear Diophantine equations (that is, linear equations over the integers), which is known to be possible in polynomial time. So far, no lower bounds for this approach were known. Lower bounds for the algebraic algorithms can best be proved in the framework of proof complexity, where they can be phrased as lower bounds for algebraic proof systems such as Nullstellensatz or the (more powerful) polynomial calculus. We give new hard examples for these systems: families of pairs of non-isomorphic graphs that are hard to distinguish by polynomial calculus proofs simultaneously over all prime fields, including GF(2), as well as examples that are hard to distinguish by the systems-of-linear-Diophantine-equations approach. In a previous paper, we observed that the CFI-graphs are closely related to what we call group CSPs: constraint satisfaction problems where the constraints are membership tests in some coset of a subgroup of a cartesian power of a base group (Z_2 in the case of the classical CFI-graphs). Our new examples are also based on group CSPs (for Abelian groups), but here we extend the CSPs by a few non-group constraints to obtain even harder instances for graph isomorphism.
The $k$-dimensional Weisfeiler-Leman algorithm ($k$-WL) is a very useful combinatorial tool in graph isomorphism testing. We address the applicability of $k$-WL to recognition of graph properties. Let $G$ be an input graph with $n$ vertices. We show that, if $n$ is prime, then vertex-transitivity of $G$ can be seen in a straightforward way from the output of 2-WL on $G$ and on the vertex-individualized copies of $G$. However, if $n$ is divisible by 16, then $k$-WL is unable to distinguish between vertex-transitive and non-vertex-transitive graphs with $n$ vertices as long as $k=o(sqrt n)$. Similar results are obtained for recognition of arc-transitivity.
139 - Zsolt Balogh , Victor Bovdi 2019
Let V_* be the normalized unitary subgroup of the modular group algebra FG of a finite p-group G over a finite field F with the classical involution *. We investigate the isomorphism problem for the group V_*, that asks when the group V_* is determin ed by its group algebra FG. We confirm it for classes of finite abelian p-groups, 2-groups of maximal class and non-abelian 2-groups of order at most 16.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا