ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the degree of heterogeneity within a shear band of a model glass

59   0   0.0 ( 0 )
 نشر من قبل Muhammad Hassani
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experiments provide evidence for density variations along shear bands (SB) in metallic glasses with a length scale of a few hundreds nanometers. Via molecular dynamics simulations of a generic binary glass model, here we show that this is strongly correlated with variations of composition, coordination number, viscosity and heat generation. Individual shear events along the SB-path show a mean distance of a few nanometers, comparable to recent experimental findings on medium range order. The aforementioned variations result from these localized perturbations, mediated by elasticity.



قيم البحث

اقرأ أيضاً

The glass transition remains unclarified in condensed matter physics. Investigating the mechanical properties of glass is challenging because any global deformation that may result in shear rejuvenation requires an astronomical relaxation time. Moreo ver, it is well known that a glass is heterogeneous and a global perturbation cannot explore local mechanical/transport properties. However, an investigation based on a local probe, i.e. microrheology, may overcome these problems. Here, we establish active microrheology of a bulk metallic glass: a probe particle driven into host medium glass. This is a technique amenable for experimental investigations. We show that upon cooling the microscopic friction exhibits a second-order phase transition; this sheds light on the origin of friction in heterogeneous materials. Further, we provide distinct evidence to demonstrate that a strong relationship exists between the microscopic dynamics of the probe particle and the macroscopic properties of the host medium glass. These findings establish active microrheology as a promising technique for investigating the local properties of bulk metallic glass.
We analyse the flow curves of a two-dimensional assembly of granular particles which are interacting via frictional contact forces. For packing fractions slightly below jamming, the fluid undergoes a large scale instability, implying a range of stres s and strainrates where no stationary flow can exist. Whereas small systems were shown previously to exhibit hysteretic jumps between the low and high stress branches, large systems exhibit continuous shear thickening arising from averaging unsteady, spatially heterogeneous flows. The observed large scale patterns as well as their dynamics are found to depend on strainrate: At the lower end of the unstable region, force chains merge to form giant bands that span the system in compressional direction and propagate in dilational direction. At the upper end, we observe large scale clusters which extend along the dilational direction and propagate along the compressional direction. Both patterns, bands and clusters, come in with infinite correlation length similar to the sudden onset of system-spanning plugs in impact experiments.
We investigate the heterogeneity of dynamics, the breakdown of the Stokes-Einstein relation and fragility in a model glass forming liquid, a binary mixture of soft spheres with a harmonic interaction potential, for spatial dimensions from 3 to 8. Dyn amical heterogeneity is quantified through the dynamical susceptibility $chi_4$, and the non-Gaussian parameter $alpha_2$. We find that the fragility, the degree of breakdown of the Stokes-Einstein relation, as well as heterogeneity of dynamics, decrease with increasing spatial dimensionality. We briefly describe the dependence of fragility on density, and use it to resolve an apparent inconsistency with previous results.
We examined dynamic heterogeneity in a model tetrahedral network glass-forming liquid. We used four-point correlation functions to extract dynamic correlation lengths xi_4^a(t) and susceptibilities chi_4^a(t) corresponding to structural relaxation on two length scales a. One length scale corresponds to structural relaxation at nearest neighbor distances and the other corresponds to relaxation of the tetrahedral structure. We find that the dynamic correlation length xi_4^{a} grows much slower with increasing relaxation time than for model fragile glass formers. We also find that chi_4^a ~ (xi_4^a)^z for a range of temperatures, but z < 3 at the lowest temperatures examined in this study. However, we do find evidence that the temperature where Stokes-Einstein violation begins marks a temperature where there is a change in the character of dynamically heterogeneous regions. Throughout the paper, we contrast the structure and dynamics of a strong glass former with that of a representative fragile glass former.
Recent theories predict that discontinuous shear-thickening (DST) involves an instability, the nature of which remains elusive. Here, we explore unsteady dynamics in a dense cornstarch suspension by coupling long rheological measurements under consta nt shear stresses to ultrasound imaging. We demonstrate that unsteadiness in DST results from localized bands that travel along the vorticity direction with a specific signature on the global shear rate response. These propagating events coexist with quiescent phases for stresses slightly above DST onset, resulting in intermittent, turbulent-like dynamics. Deeper into DST, events proliferate, leading to simpler, Gaussian dynamics. We interpret our results in terms of unstable vorticity bands as inferred from recent model and numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا