This paper provides an upper for the invariance pressure of control sets with nonempty interior and a lower bound for sets with finite volume. In the special case of the control set of a hyperbolic linear control system in R^{d} this yields an explicit formula. Further applications to linear control systems on Lie groups and to inner control sets are discussed.
For linear control systems in discrete time controllability properties are characterized. In particular, a unique control set with nonvoid interior exists and it is bounded in the hyperbolic case. Then a formula for the invariance pressure of this control set is proved.
The invariance pressure of continuous-time control systems with initial states in a set K which are to be kept in a set Q is introduced and a number of results are derived, mainly for the case where Q is a control set.
We show that sparsity constrained optimization problems over low dimensional spaces tend to have a small duality gap. We use the Shapley-Folkman theorem to derive both data-driven bounds on the duality gap, and an efficient primalization procedure to
recover feasible points satisfying these bounds. These error bounds are proportional to the rate of growth of the objective with the target cardinality, which means in particular that the relaxation is nearly tight as soon as the target cardinality is large enough so that only uninformative features are added.
We lower bound the complexity of finding $epsilon$-stationary points (with gradient norm at most $epsilon$) using stochastic first-order methods. In a well-studied model where algorithms access smooth, potentially non-convex functions through queries
to an unbiased stochastic gradient oracle with bounded variance, we prove that (in the worst case) any algorithm requires at least $epsilon^{-4}$ queries to find an $epsilon$ stationary point. The lower bound is tight, and establishes that stochastic gradient descent is minimax optimal in this model. In a more restrictive model where the noisy gradient estimates satisfy a mean-squared smoothness property, we prove a lower bound of $epsilon^{-3}$ queries, establishing the optimality of recently proposed variance reduction techniques.
In this paper we give an algorithm to round the floating point output of a semidefinite programming solver to a solution over the rationals or a quadratic extension of the rationals. We apply this to get sharp bounds for packing problems, and we use
these sharp bounds to prove that certain optimal packing configurations are unique up to rotations. In particular, we show that the configuration coming from the $mathsf{E}_8$ root lattice is the unique optimal code with minimal angular distance $pi/3$ on the hemisphere in $mathbb R^8$, and we prove that the three-point bound for the $(3, 8, vartheta)$-spherical code, where $vartheta$ is such that $cos vartheta = (2sqrt{2}-1)/7$, is sharp by rounding to $mathbb Q[sqrt{2}]$. We also use our machinery to compute sharp upper bounds on the number of spheres that can be packed into a larger sphere.