ترغب بنشر مسار تعليمي؟ اضغط هنا

$C^2$ estimate for oblique derivative problem with mean Dini coefficients

72   0   0.0 ( 0 )
 نشر من قبل Hongjie Dong
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider second-order elliptic equations in non-divergence form with oblique derivative boundary conditions. We show that any strong solutions to such problems are twice continuously differentiable up to the boundary provided that the mean oscillations of coefficients satisfy the Dini condition and the boundary is locally represented by a $C^1$ function whose first derivatives are Dini continuous. This improves a recent result in [6]. An extension to fully nonlinear elliptic equations is also presented.

قيم البحث

اقرأ أيضاً

64 - Hongjie Dong , Jihoon Lee , 2018
We show that weak solutions to conormal derivative problem for elliptic equations in divergence form are continuously differentiable up to the boundary provided that the mean oscillations of the leading coefficients satisfy the Dini condition, the lo wer order coefficients satisfy certain suitable conditions, and the boundary is locally represented by a $C^1$ function whose derivatives are Dini continuous. We also prove that strong solutions to oblique derivative problem for elliptic equations in nondivergence form are twice continuously differentiable up to the boundary if the mean oscillations of coefficients satisfy the Dini condition and the boundary is locally represented by a $C^1$ function whose derivatives are double Dini continuous. This in particular extends a result of M. V. Safonov (Comm. Partial Differential Equations 20:1349--1367, 1995)
We study the stationary Stokes system in divergence form. The coefficients are assumed to be merely measurable in one direction and have Dini mean oscillations in the other directions. We prove that if $(u,p)$ is a weak solution of the system, then $ (Du,p)$ is bounded and its certain linear combinations are continuous. We also prove a weak type-$(1,1)$ estimate for $(Du,p)$ under a stronger assumption on the $L^1$-mean oscillation of the coefficients. The corresponding results up to the boundary on a half ball are also established. These results are new even for elliptic equations and systems.
116 - YanYan Li 2016
We prove $C^1$ regularity of solutions to divergence form elliptic systems with Dini-continuous coefficients
We study the oblique derivative problem for uniformly elliptic equations on cone domains. Under the assumption of axi-symmetry of the solution, we find sufficient conditions on the angle of the oblique vector for Holder regularity of the gradient to hold up to the vertex of the cone. The proof of regularity is based on the application of carefully constructed barrier methods or via perturbative arguments. In the case that such regularity does not hold, we give explicit counterexamples. We also give a counterexample to regularity in the absence of axi-symmetry. Unlike in the equivalent two dimensional problem, the gradient Holder regularity does not hold for all axi-symmetric solutions, but rather the qualitative regularity properties depend on both the opening angle of the cone and the angle of the oblique vector in the boundary condition.
154 - Jiakun Liu 2020
We obtain a genuine local $C^2$ estimate for the Monge-Amp`ere equation in dimension two, by using the partial Legendre transform.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا