ﻻ يوجد ملخص باللغة العربية
Generative adversary networks (GANs) have recently led to highly realistic image synthesis results. In this work, we describe a new method to expose GAN-synthesized images using the locations of the facial landmark points. Our method is based on the observations that the facial parts configuration generated by GAN models are different from those of the real faces, due to the lack of global constraints. We perform experiments demonstrating this phenomenon, and show that an SVM classifier trained using the locations of facial landmark points is sufficient to achieve good classification performance for GAN-synthesized faces.
Sophisticated generative adversary network (GAN) models are now able to synthesize highly realistic human faces that are difficult to discern from real ones visually. In this work, we show that GAN synthesized faces can be exposed with the inconsiste
GAN-based techniques that generate and synthesize realistic faces have caused severe social concerns and security problems. Existing methods for detecting GAN-generated faces can perform well on limited public datasets. However, images from existing
Research on the detection of AI-generated videos has focused almost exclusively on face videos, usually referred to as deepfakes. Manipulations like face swapping, face reenactment and expression manipulation have been the subject of an intense resea
Generative adversary network (GAN) generated high-realistic human faces have been used as profile images for fake social media accounts and are visually challenging to discern from real ones. In this work, we show that GAN-generated faces can be expo
Recently, generative adversarial networks (GANs) have achieved stunning realism, fooling even human observers. Indeed, the popular tongue-in-cheek website {small url{ http://thispersondoesnotexist.com}}, taunts users with GAN generated images that se