ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of the Asteroseismic Mass Scale of Red Clump Giants with Photometric Mass Estimates

262   0   0.0 ( 0 )
 نشر من قبل Deokkeun An
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Asteroseismology can provide joint constraints on masses and radii of individual stars. While this approach has been extensively tested for red giant branch (RGB) stars, it has been more difficult to test for helium core-burning red-clump (RC) giants because of the lack of fundamental calibrators. To provide independent mass estimates, we utilize a number of widely used horizontal-branch (HB) models in the literature, and derive photometric masses from a comparison with $griBVI_CJHK_s$ photometry. Our selected models disagree with each other on the predicted mass-luminosity-temperature relation. We adopt first-order corrections on colors and magnitudes to minimize the dispersion between different models by forcing models to match the observed location in the solar-metallicity cluster M67. Even for these calibrated models, however, the internal consistency between models deteriorates at higher metallicities, and photometric masses become smaller than asteroseismic masses, as seen from metal-rich field RC stars with Gaia parallaxes. Similarly, the average photometric mass for metal-rich NGC 6791 stars ranges from $0.7 M_odot$ to $1.1 M_odot$, depending on the specific set of models employed. An ensemble average of the photometric masses ($0.88pm0.16 M_odot$) in NGC 6791 is marginally consistent with the asteroseismic mass ($1.16pm0.04 M_odot$). There is a clear tension between the masses that one would predict from photometry for metal-rich field RC stars, asteroseismic masses, and those that would be expected from the ages of stars in the Galactic disk populations and canonical RGB mass loss. We conclude that standard RC models need to be re-examined in light of these powerful new data sets.



قيم البحث

اقرأ أيضاً

We present a study of the luminosity density distribution of the Galactic bar using number counts of red clump giants (RCGs) from the OGLE-III survey. The data were recently published by Nataf et al. (2013) for 9019 fields towards the bulge and have $2.94times 10^6$ RC stars over a viewing area of $90.25 ,textrm{deg}^2$. The data include the number counts, mean distance modulus ($mu$), dispersion in $mu$ and full error matrix, from which we fit the data with several tri-axial parametric models. We use the Markov Chain Monte Carlo (MCMC) method to explore the parameter space and find that the best-fit model is the $E_3$ model, with the distance to the GC is 8.13 kpc, the ratio of semi-major and semi-minor bar axis scale lengths in the Galactic plane $x_{0},y_{0}$, and vertical bar scale length $z_0$, is $x_0:y_0:z_0 approx 1.00:0.43:0.40$ (close to being prolate). The scale length of the stellar density profile along the bars major axis is $sim$ 0.67 kpc and has an angle of $29.4^circ$, slightly larger than the value obtained from a similar study based on OGLE-II data. The number of estimated RC stars within the field of view is $2.78 times 10^6$, which is systematically lower than the observed value. We subtract the smooth parametric model from the observed counts and find that the residuals are consistent with the presence of an X-shaped structure in the Galactic centre, the excess to the estimated mass content is $sim 5.8%$. We estimate the total mass of the bar is $sim 1.8 times 10^{10} M_odot$. Our results can be used as a key ingredient to construct new density models of the Milky Way and will have implications on the predictions of the optical depth to gravitational microlensing and the patterns of hydrodynamical gas flow in the Milky Way.
During the past 10 years the unprecedented quality and frequency resolution of asteroseismic data provided by space photometry has revolutionized the study of red-giant stars providing us with the possibility to probe the interior of thousands of the se targets. Our aim is to present an asteroseismic tool which allows to determine the total angular momentum of stars, without a priori inference of their internal rotational profile. We adopt and adapt to red giants the asteroseismic inversion technique developed for the case of the Sun. The method has been tested assuming different artificial sets of data, including also modes with harmonic degree l> 1. We estimate with an accuracy of 14.5% the total angular momentum of the red-giant star KIC 4448777 observed by Kepler during the first four consecutive years of operation.} Our results indicate that the measurement of the total angular momentum of red-giant stars can be determined with a fairly high precision by means of asteroseismology by using a small set of rotational splittings of only dipolar modes and that our method, based on observations of stellar pulsations, provides a powerful mean for testing and modeling transport of angular momentum in stars.
Symbiotic stars display absorption lines of a cool red giant together with emission lines of a nebula ionized by a hotter star, indicative of an active binary star system in which mass transfer is occurring. PIONIER at the VLT has been used to combin e the light of four telescopes at a time to study in unprecedented detail how mass is transferred in symbiotic stars. The results of a mini-survey of symbiotic stars with PIONIER are summarised and some tentative general results about the role of Roche lobe overflow are presented.
Context. The abundances of the three main isotopes of oxygen are altered in the course of the CNO-cycle. When the first dredge-up mixes the burning products to the surface, the nucleosynthesis processes can be probed by measuring oxygen isotopic rati os. Aims. By measuring 16O/17O and 16O/18O in red giants of known mass we compare the isotope ratios with predictions from stellar and galactic evolution modelling. Methods. Oxygen isotopic ratios were derived from the K-band spectra of six red giants. The sample red giants are open cluster members with known masses of between 1.8 and 4.5 Msun . The abundance determination employs synthetic spectra calculated with the COMARCS code. The effect of uncertainties in the nuclear reaction rates, the mixing length, and of a change in the initial abundance of the oxygen isotopes was determined by a set of nucleosynthesis and mixing models using the FUNS code. Results. The observed 16O/17O ratios are in good agreement with the model results, even if the measured values do not present clear evidence of a variation with the stellar mass. The observed 16O/18O ratios are clearly lower than the predictions from our reference model. Variations in nuclear reaction rates and mixing length parameter both have only a very weak effect on the predicted values. The 12C/13C ratios of the K giants studied implies the absence of extra-mixing in these objects. Conclusions. A comparison with galactic chemical evolution models indicates that the 16O/18O abundance ratio underwent a faster decrease than predicted. To explain the observed ratios, the most likely scenario is a higher initial 18O abundance combined with a lower initial 16 O abundance. Comparing the measured 18 O/17 O ratio with the corresponding value for the ISM points towards an initial enhancement of 17O as well. Limitations imposed by the observations prevent this from being a conclusive result.
Context. Observations and analysis of solar-type oscillations in red-giant stars is an emerging aspect of asteroseismic analysis with a number of open questions yet to be explored. Although stochastic oscillations have previously been detected in red giants from both radial velocity and photometric measurements, those data were either too short or had sampling that was not complete enough to perform a detailed data analysis of the variability. The quality and quantity of photometric data as provided by the CoRoT satellite is necessary to provide a breakthrough in observing p-mode oscillations in red giants. We have analyzed continuous photometric time-series of about 11 400 relatively faint stars obtained in the exofield of CoRoT during the first 150 days long-run campaign from May to October 2007. We find several hundred stars showing a clear power excess in a frequency and amplitude range expected for red-giant pulsators. In this paper we present first results on a sub-sample of these stars. Aims. Knowing reliable fundamental parameters like mass and radius is essential for detailed asteroseismic studies of red-giant stars. As the CoRoT exofield targets are relatively faint (11-16 mag) there are no (or only weak) constraints on the stars location in the H-R diagram. We therefore aim to extract information about such fundamental parameters solely from the available time series. Methods. We model the convective background noise and the power excess hump due to pulsation with a global model fit and deduce reliable estimates for the stellar mass and radius from scaling relations for the frequency of maximum oscillation power and the characteristic frequency separation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا