ﻻ يوجد ملخص باللغة العربية
In this paper, we consider an electrodynamics of higher derivatives coupled to a Lorentz-violating background tensor. Specifically, we are interested in a dimension-five term of the CPT-odd sector of the nonminimal Standard-Model Extension. By a particular choice of the operator $hat{k}_{AF}$, we obtain a higher-derivative version of the Carroll-Field-Jackiw (CFJ) term, $frac{1}{2}epsilon^{kappalambdamu u}A_{lambda}D_{kappa}square F_{mu u}$, with a Lorentz-violating background vector $D_{kappa}$. This modification is subject to being investigated. We calculate the propagator of the theory and from its poles, we analyze the dispersion relations of the isotropic and anisotropic sectors. We verify that classical causality is valid for all parameter choices, but that unitarity of the theory is generally not assured. The latter is found to break down for certain configurations of the background field and momentum. In an analog way, we also study a dimension-five anisotropic higher-derivative CFJ term, which is written as $epsilon^{kappalambdamu u}A_{lambda}T_{kappa}(Tcdotpartial)^{2}F_{mu u}$ and is directly linked to the photon sector of Myers-Pospelov theory. Within the second model, purely timelike and spacelike $T_{kappa}$ are considered. For the timelike choice, one mode is causal, whereas the other is noncausal. Unitarity is conserved, in general, as long as the energy stays real - even for the noncausal mode. For the spacelike scenario, causality is violated when the propagation direction lies within certain regimes. However, there are particular configurations preserving unitarity and strong numerical indications exist that unitarity is guaranteed for all purely spacelike configurations. The results improve our understanding of nonminimal CPT-odd extensions of the electromagnetic sector.
This paper is dedicated to the study of interactions between external sources for the electromagnetic field in a model which exhibits Lorentz symmetry breaking. We investigate such interactions in the CPT-even photon sector of the Standard Model Exte
We study CPT- and Lorentz-odd electrodynamics described by the Standard Model Extension. Its radiation is confined to the geometry of hollow conductor waveguide, open along $z$. In a special class of reference frames, with vanishing both 0-th and $z$
In this work we focus on the Carroll-Field-Jackiw (CFJ) modified electrodynamics in combination with a CPT-even Lorentz-violating contribution. We add a photon mass term to the Lagrange density and study the question whether this contribution can ren
Based on the motivation that some quantum gravity theories predicts the Lorentz Invariance Violation (LIV) around Planck-scale energy levels, this paper proposes a new formalism that addresses the possible effects of LIV in the electrodynamics. This
In this paper we propose a non-minimal, and ghost free, coupling between the gauge field and the fermionic one from which we obtain, perturbatively, terms with higher order derivatives as quantum corrections to the photon effective action in the low