ﻻ يوجد ملخص باللغة العربية
To date, a handful of exoplanets have been photometrically mapped using phase-modulated reflection or emission from their surfaces, but the small amplitudes of such signals have limited previous maps almost exclusively to coarse dipolar features on hot giant planets. In this work, we uncover a signal using recently released data from the Transiting Exoplanet Survey Satellite (TESS), which we show corresponds to time-variable reflection from a terrestrial planet with a rotation period of 0.9972696 days. Using a spherical harmonic-based reflection model developed as an extension of the STARRY package, we are able to reconstruct the surface features of this rocky world. We recover a time-variable albedo map of the planet including persistent regions which we interpret as oceans and cloud banks indicative of continental features. We argue that this planet represents the most promising detection of a habitable world to date, although the potential intelligence of any life on it is yet to be determined.
We present $Spitzer$ 4.5$mu$m observations of the transit of TOI-700 d, a habitable zone Earth-sized planet in a multiplanet system transiting a nearby M-dwarf star (TIC 150428135, 2MASS J06282325-6534456). TOI-700 d has a radius of $1.144^{+0.062}_{
We present an approach that is able to both rapidly assess the dynamical stability of multiple planet systems, and determine whether an exoplanet system would be capable of hosting a dynamically stable Earth-mass companion in its habitable zone. We c
In the search for life in the cosmos, NASAs Transiting Exoplanet Survey Satellite (TESS) mission has already monitored about 74% of the sky for transiting extrasolar planets, including potentially habitable worlds. However, TESS only observed a fract
We present the Transiting Exoplanet Survey Satellite (TESS) Habitable Zone Stars Catalog, a list of 1822 nearby stars with a TESS magnitude brighter than T = 12 and reliable distances from Gaia DR2, around which the NASAs TESS mission can detect tran
We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R_PL = 10.12 pm 0.56 R_E) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false positive tests yielded