ﻻ يوجد ملخص باللغة العربية
We have conducted a search for bright repeating Fast Radio Bursts in our nearby Universe with the Australian Square Kilometer Array Pathfinder (ASKAP) in single-dish mode. We used eight ASKAP 12-m dishes, each equipped with a Chequerboard Phased Array Feed forming 36 beams on the sky, to survey $sim$30,000 deg$^{2}$ of the southern sky ($-90^{circ} < delta < +30^{circ}$) in 158 antenna days. The fluence limit of the survey is 22 Jyms. We report the detection of FRB 180515 in our survey. We found no repeating FRBs in a total mean observation of 3hrs per pointing divided into one-hour intervals, which were separated in time ranging between a day to a month. Using our non-detection, we exclude the presence of a repeating FRB similar to FRB 121102 closer than $z=0.004$ in the survey area --- a volume of at least $9.4 times 10^4$Mpc$^3$ --- at 95% confidence.
We present a search for radio afterglows from long gamma-ray bursts using the Australian Square Kilometre Array Pathfinder (ASKAP). Our search used the Rapid ASKAP Continuum Survey, covering the entire celestial sphere south of declination $+41^circ$
We present results from a circular polarisation survey for radio stars in the Rapid ASKAP Continuum Survey (RACS). RACS is a survey of the entire sky south of $delta=+41^circ$ being conducted with the Australian Square Kilometre Array Pathfinder tele
Repeating fast radio bursts (FRBs) present excellent opportunities to identify FRB progenitors and host environments, as well as decipher the underlying emission mechanism. Detailed studies of repeating FRBs might also hold clues to the origin of FRB
A bright radio burst was newly discovered in SGR 1935+2154, which exhibit some FRB-like temporal- and frequency-properties, suggesting a neutron star (NS)/magnetar magnetospheric origin of FRBs. We propose an explanation of the temporal- and frequenc
Fast spinning (e.g., sub-second) neutron star with ultra-strong magnetic fields (or so-called magnetar) is one of the promising origins of repeating fast radio bursts (FRBs). Here we discuss circularly polarised emissions produced by propagation effe