ﻻ يوجد ملخص باللغة العربية
Quasi parton distributions (quasi-PDFs) are currently under intense investigation. Quasi-PDFs are defined through spatial correlation functions and are thus accessible in lattice QCD. They gradually approach their corresponding standard (light-cone) PDFs as the hadron momentum increases. Recently, we investigated the concept of quasi-distributions in the case of generalized parton distributions (GPDs) by calculating the twist-2 vector GPDs in the scalar diquark spectator model. In the present work, we extend this study to the remaining six leading-twist GPDs. For large hadron momenta, all quasi-GPDs analytically reduce to the corresponding standard GPDs. We also study the numerical mismatch between quasi-GPDs and standard GPDs for finite hadron momenta. Furthermore, we present results for quasi-PDFs, and explore higher-twist effects associated with the parton momentum and the longitudinal momentum transfer to the target. We study the dependence of our results on the model parameters as well as the type of diquark. Finally, we discuss the lowest moments of quasi distributions, and elaborate on the relation between quasi-GPDs and the total angular momentum of quarks. The moment analysis suggests a preferred definition of several quasi-distributions.
Recently the concept of quasi parton distributions (quasi-PDFs) for hadrons has been proposed. Quasi-PDFs are defined through spatial correlation functions and as such can be computed numerically using quantum chromodynamics on a four-dimensional lat
We investigate the quark Wigner distributions in a light-cone spectator model. The Wigner distribution, as a quasi-distribution function, provides the most general one-parton information in a hadron. Combining the polarization configurations, unpolar
The sub-leading power of the scattering amplitude for deeply-virtual Compton scattering (DVCS) off the nucleon contains leading-twist and twist-3 generalized parton distributions (GPDs). We point out that in DVCS, at twist-3 accuracy, one cannot addr
If Jaffe and Wilczeks diquark picture for $Theta_5$ pentaquark is correct, there should also exist a $SU_F$(3) pentaquark octet and singlet with no orbital excitation between the diquark pair, hence $J^P={1/2}^-$. These states are lighter than the $T
The purpose of the present study is to explore the mass spectrum of the hidden charm tetraquark states within a diquark model. Proposing that a tetraquark state is composed of a diquark and an antidiquark, the masses of all possible $[qc][bar{q}bar{c