ﻻ يوجد ملخص باللغة العربية
B-mode ultrasound tongue imaging is widely used in the speech production field. However, efficient interpretation is in a great need for the tongue image sequences. Inspired by the recent success of unsupervised deep learning approach, we explore unsupervised convolutional network architecture for the feature extraction in the ultrasound tongue image, which can be helpful for the clinical linguist and phonetics. By quantitative comparison between different unsupervised feature extraction approaches, the denoising convolutional autoencoder (DCAE)-based method outperforms the other feature extraction methods on the reconstruction task and the 2010 silent speech interface challenge. A Word Error Rate of 6.17% is obtained with DCAE, compared to the state-of-the-art value of 6.45% using Discrete cosine transform as the feature extractor. Our codes are available at https://github.com/DeePBluE666/Source-code1.
Convolutional Neural Networks (CNNs) have recently become a favored technique for image denoising due to its adaptive learning ability, especially with a deep configuration. However, their efficacy is inherently limited owing to their homogenous netw
Hyperspectral images (HSIs) have been widely applied in many fields, such as military, agriculture, and environment monitoring. Nevertheless, HSIs commonly suffer from various types of noise during acquisition. Therefore, denoising is critical for HS
For speech-related applications in IoT environments, identifying effective methods to handle interference noises and compress the amount of data in transmissions is essential to achieve high-quality services. In this study, we propose a novel multi-i
We present a new convolutional neural network (CNN) based ImageJ plugin for fluorescence microscopy image denoising with an average improvement of 7.5 dB in peak signal-to-noise ratio (PSNR) and denoising instantly within 80 msec.
While accuracy is an evident criterion for ultrasound image segmentation, output consistency across different tests is equally crucial for tracking changes in regions of interest in applications such as monitoring the patients response to treatment,