ترغب بنشر مسار تعليمي؟ اضغط هنا

Denoising convolutional autoencoder based B-mode ultrasound tongue image feature extraction

221   0   0.0 ( 0 )
 نشر من قبل Kele Xu
 تاريخ النشر 2019
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

B-mode ultrasound tongue imaging is widely used in the speech production field. However, efficient interpretation is in a great need for the tongue image sequences. Inspired by the recent success of unsupervised deep learning approach, we explore unsupervised convolutional network architecture for the feature extraction in the ultrasound tongue image, which can be helpful for the clinical linguist and phonetics. By quantitative comparison between different unsupervised feature extraction approaches, the denoising convolutional autoencoder (DCAE)-based method outperforms the other feature extraction methods on the reconstruction task and the 2010 silent speech interface challenge. A Word Error Rate of 6.17% is obtained with DCAE, compared to the state-of-the-art value of 6.45% using Discrete cosine transform as the feature extractor. Our codes are available at https://github.com/DeePBluE666/Source-code1.



قيم البحث

اقرأ أيضاً

Convolutional Neural Networks (CNNs) have recently become a favored technique for image denoising due to its adaptive learning ability, especially with a deep configuration. However, their efficacy is inherently limited owing to their homogenous netw ork formation with the unique use of linear convolution. In this study, we propose a heterogeneous network model which allows greater flexibility for embedding additional non-linearity at the core of the data transformation. To this end, we propose the idea of an operational neuron or Operational Neural Networks (ONN), which enables a flexible non-linear and heterogeneous configuration employing both inter and intra-layer neuronal diversity. Furthermore, we propose a robust operator search strategy inspired by the Hebbian theory, called the Synaptic Plasticity Monitoring (SPM) which can make data-driven choices for non-linearities in any architecture. An extensive set of comparative evaluations of ONNs and CNNs over two severe image denoising problems yield conclusive evidence that ONNs enriched by non-linear operators can achieve a superior denoising performance against CNNs with both equivalent and well-known deep configurations.
89 - Yan Gao , Feng Gao , Junyu Dong 2021
Hyperspectral images (HSIs) have been widely applied in many fields, such as military, agriculture, and environment monitoring. Nevertheless, HSIs commonly suffer from various types of noise during acquisition. Therefore, denoising is critical for HS I analysis and applications. In this paper, we propose a novel blind denoising method for HSIs based on Multi-Stream Denoising Network (MSDNet). Our network consists of the noise estimation subnetwork and denoising subnetwork. In the noise estimation subnetwork, a multiscale fusion module is designed to capture the noise from different scales. Then, the denoising subnetwork is utilized to obtain the final denoising image. The proposed MSDNet can obtain robust noise level estimation, which is capable of improving the performance of HSI denoising. Extensive experiments on HSI dataset demonstrate that the proposed method outperforms four closely related methods.
For speech-related applications in IoT environments, identifying effective methods to handle interference noises and compress the amount of data in transmissions is essential to achieve high-quality services. In this study, we propose a novel multi-i nput multi-output speech compression and enhancement (MIMO-SCE) system based on a convolutional denoising autoencoder (CDAE) model to simultaneously improve speech quality and reduce the dimensions of transmission data. Compared with conventional single-channel and multi-input single-output systems, MIMO systems can be employed in applications that handle multiple acoustic signals need to be handled. We investigated two CDAE models, a fully convolutional network (FCN) and a Sinc FCN, as the core models in MIMO systems. The experimental results confirm that the proposed MIMO-SCE framework effectively improves speech quality and intelligibility while reducing the amount of recording data by a factor of 7 for transmission.
We present a new convolutional neural network (CNN) based ImageJ plugin for fluorescence microscopy image denoising with an average improvement of 7.5 dB in peak signal-to-noise ratio (PSNR) and denoising instantly within 80 msec.
While accuracy is an evident criterion for ultrasound image segmentation, output consistency across different tests is equally crucial for tracking changes in regions of interest in applications such as monitoring the patients response to treatment, measuring the progression or regression of the disease, reaching a diagnosis, or treatment planning. Convolutional neural networks (CNNs) have attracted rapidly growing interest in automatic ultrasound image segmentation recently. However, CNNs are not shift-equivariant, meaning that if the input translates, e.g., in the lateral direction by one pixel, the output segmentation may drastically change. To the best of our knowledge, this problem has not been studied in ultrasound image segmentation or even more broadly in ultrasound images. Herein, we investigate and quantify the shift-variance problem of CNNs in this application and further evaluate the performance of a recently published technique, called BlurPooling, for addressing the problem. In addition, we propose the Pyramidal BlurPooling method that outperforms BlurPooling in both output consistency and segmentation accuracy. Finally, we demonstrate that data augmentation is not a replacement for the proposed method. Source code is available at https://git.io/pbpunet and http://code.sonography.ai.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا