ﻻ يوجد ملخص باللغة العربية
Controlling diseases such as dengue fever, chikungunya and zika fever by introduction of the intracellular parasitic bacterium Wolbachia in mosquito populations which are their vectors, is presently quite a promising tool to reduce their spread. While description of the conditions of such experiments has received ample attention from biologists, entomologists and applied mathematicians, the issue of effective scheduling of the releases remains an interesting problem for Control theory. Having in mind the important uncertainties present in the dynamics of the two populations in interaction, we attempt here to identify general ideas for building release strategies, which should apply to several models and situations. These principles are exemplified by two interval observer-based feedback control laws whose stabilizing properties are demonstrated when applied to a model retrieved from [Bliman et al., 2018]. Crucial use is made of the theory of monotone dynamical systems.
Mosquitoes are vectors of viral diseases with epidemic potential in many regions of the world, and in absence of vaccines or therapies, their control is the main alternative. Chemical control through insecticides has been one of the conventional stra
Our aim is to present a new model which encompasses pace optimization and motor control effort for a runner on a fixed distance. We see that for long races, the long term behaviour is well approximated by a turnpike problem. We provide numerical simu
We propose a mean-field optimal control problem for the parameter identification of a given pattern. The cost functional is based on the Wasserstein distance between the probability measures of the modeled and the desired patterns. The first-order op
In this paper, we propose a sex-structured entomological model that serves as a basis for design of control strategies relying on releases of sterile male mosquitoes (Aedes spp) and aiming at elimination of the wild vector population in some target l
This paper studies a class of partially observed Linear Quadratic Gaussian (LQG) problems with unknown dynamics. We establish an end-to-end sample complexity bound on learning a robust LQG controller for open-loop stable plants. This is achieved usin