ﻻ يوجد ملخص باللغة العربية
Many possible definitions have been proposed for fractional derivatives and integrals, starting from the classical Riemann-Liouville formula and its generalisations and modifying it by replacing the power function kernel with other kernel functions. We demonstrate, under some assumptions, how all of these modifications can be considered as special cases of a single, unifying, model of fractional calculus. We provide a fundamental connection with classical fractional calculus by writing these general fractional operators in terms of the original Riemann-Liouville fractional integral operator. We also consider inversion properties of the new operators, prove analogues of the Leibniz and chain rules in this model of fractional calculus, and solve some fractional differential equations using the new operators.
Many different types of fractional calculus have been proposed, which can be organised into some general classes of operators. For a unified mathematical theory, results should be proved in the most general possible setting. Two important classes of
We consider the Cauchy problem $(mathbb D_{(k)} u)(t)=lambda u(t)$, $u(0)=1$, where $mathbb D_{(k)}$ is the general convolutional derivative introduced in the paper (A. N. Kochubei, Integral Equations Oper. Theory {bf 71} (2011), 583--600), $lambda >
Many different types of fractional calculus have been defined, which may be categorised into broad classes according to their properties and behaviours. Two types that have been much studied in the literature are the Hadamard-type fractional calculus
Several approaches to the formulation of a fractional theory of calculus of variable order have appeared in the literature over the years. Unfortunately, most of these proposals lack a rigorous mathematical framework. We consider an alternative view
We aim to introduce the generalized multiindex Bessel function $J_{left( beta _{j}right) _{m},kappa ,b}^{left( alpha _{j}right)_{m},gamma ,c}left[ zright] $ and to present some formulas of the Riemann-Liouville fractional integration and differentiat