ﻻ يوجد ملخص باللغة العربية
This paper studies the 1-2-1 half-duplex network model, where two half-duplex nodes can communicate only if they point `beams at each other; otherwise, no signal can be exchanged or interference can be generated. The main result of this paper is the design of two polynomial-time algorithms that: (i) compute the approximate capacity of the 1-2-1 half-duplex network and, (ii) find the network schedule optimal for the approximate capacity. The paper starts by expressing the approximate capacity as a linear program with an exponential number of constraints. A core technical component consists of building a polynomial-time separation oracle for this linear program, by using algorithmic tools such as perfect matching polytopes and Gomory-Hu trees.
In this work, we study bounds on the capacity of full-duplex Gaussian 1-2-1 networks with imperfect beamforming. In particular, different from the ideal 1-2-1 network model introduced in [1], in this model beamforming patterns result in side-lobe lea
We address the optimization of the sum rate performance in multicell interference-limited singlehop networks where access points are allowed to cooperate in terms of joint resource allocation. The resource allocation policies considered here combine
The hybrid half-duplex/full-duplex (HD/FD) relaying scheme is an effective paradigm to overcome the negative effects of the self-interference incurred by the full-duplex (FD) mode. However, traditional hybrid HD/FD scheme does not consider the divers
In a bi-directional relay channel, two nodes wish to exchange independent messages over a shared wireless half-duplex channel with the help of relays. Recent work has considered information theoretic limits of the bi-directional relay channel with a
Recent work has characterized the sum capacity of time-varying/frequency-selective wireless interference networks and $X$ networks within $o(log({SNR}))$, i.e., with an accuracy approaching 100% at high SNR (signal to noise power ratio). In this pape