ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauge field theories with Lorentz-violating operators of arbitrary dimension

70   0   0.0 ( 0 )
 نشر من قبل Alan Kostelecky
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The classification of Lorentz- and CPT-violating operators in nonabelian gauge field theories is performed. We construct all gauge-invariant terms describing propagation and interaction in the action for fermions and gauge fields. Restrictions to the abelian, Lorentz-invariant, and isotropic limits are presented. We provide two illustrative applications of the results to quantum electrodynamics and quantum chromodynamics. First constraints on nonlinear Lorentz-violating effects in electrodynamics are obtained using data from experiments on photon-photon scattering, and corrections from nonminimal Lorentz and CPT violation to the cross section for deep inelastic scattering are derived.


قيم البحث

اقرأ أيضاً

We consider the most general set of $SU(2) times U(1)$ invariant CP-violating operators of dimension six, which contribute to $VVh$ interactions ($V = W, Z, gamma$). Our aim is to constrain any CP-violating new physics above the electroweak scale via the effective couplings that arise when such physics is integrated out. For this purpose, we use, in turn, electroweak precision data, global fits of Higgs data at the Large Hadron Collider and the electric dipole moments of the neutron and the electron. We thus impose constraints mainly on two-parameter and three-parameter spaces. We find that the constraints from the electroweak precision data are the weakest. Among the existing Higgs search channels, considerable constraints come from the diphoton signal strength. We note that potential contribution to $h rightarrow gamma Z$ may in principle be a useful constraining factor, but it can be utilized only in the high energy run. The contributions to electric dipole moments mostly lead to the strongest constraints, though somewhat fine-tuned combinations of more than one parameter with large magnitudes are allowed. We also discuss constraints on gauge boson trilinear couplings which depend on the parameters of the CP-violating operators .
The electric dipole moment (EDM) of an atom could arise also from $P$-odd and $T$-odd electron-nucleon couplings. In this work we investigate a general class of dimension-$6$ electron-nucleon ($e$-$N$) nonminimal interactions mediated by Lorentz-viol ating (LV) tensors of rank ranging from $1$ to $4$. The possible couplings are listed as well as their behavior under $C$, $P$ and $T$, allowing us to select the couplings compatible with EDM physics. The unsuppressed contributions of these couplings to the atoms Hamiltonian can be read as EDM-equivalent. The LV coefficients magnitudes are limited using EDM experimental data to the level of $3.2times 10^{-13} text{(GeV)}^{-2}$ or $1.6times10^{-15} text{(GeV)}^{-2}$.
Extensions of the standard model with low-energy supersymmetry generically allow baryon- and lepton-number violating operators of dimension four and five, yielding rapid proton decay. The dimension-four operators are usually forbidden by matter parit y. We investigate to what extent the appearance of dimension-five operators at the Planck scale may be constrained by the different grand-unified gauge groups. Dimension-five operators are suppressed in models based on E_6 and SU(3)_C x SU(3)_L x SU(3)_R, where four matter fields do not form a gauge singlet. An intermediate scale offers the possibility to sufficiently suppress these dimension-five operators.
We calculate the one-loop anomalous dimension matrix for the dimension-six baryon number violating operators of the Standard Model effective field theory, including right-handed neutrino fields. We discuss the flavor structure of the renormalization group evolution in the contexts of minimal flavor violation and unification.
Electric dipole moments of atoms can arise from P-odd and T-odd electron--nucleon couplings. This work studies a general class of dimension-six electron--nucleon interactions mediated by Lorentz-violating tensors of ranks ranging from $1$ to $4$. The possible couplings are listed as well as their behavior under C, P, and T, allowing us to select the couplings compatible with electric-dipole-moment physics. The unsuppressed contributions of these couplings to the atoms hamiltonian can be read as equivalent to an electric dipole moment. The Lorentz-violating coefficients magnitudes are limited using electric-dipole-moment measurements at the levels of $3.2times10^{-31}text{(eV)}^{-2}$ or $1.6times10^{-33}text{(eV)}^{-2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا