ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite modular subgroups for fermion mass matrices and baryon/lepton number violation

80   0   0.0 ( 0 )
 نشر من قبل Kenta Takagi
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a flavor model that the quark sector has the $S_3$ modular symmetry,while the lepton sector has the $A_4$ modular symmetry. Our model leads to characteristic quark mass matrices which are consistent with experimental data of quark masses, mixing angles and the CP violating phase. The lepton sector is also consistent with the experimental data of neutrino oscillations. We also study baryon and lepton number violations in our flavor model.

قيم البحث

اقرأ أيضاً

108 - Shinya Kanemura 2017
We propose a model to explain tiny masses of neutrinos with the lepton number conservation, where neither too heavy particles beyond the TeV-scale nor tiny coupling constants are required. Assignments of conserving lepton numbers to new fields result in an unbroken $Z_2$ symmetry that stabilizes the dark matter candidate (the lightest $Z_2$-odd particle). In this model, $Z_2$-odd particles play an important role to generate the mass of neutrinos. The scalar dark matter in our model can satisfy constraints on the dark matter abundance and those from direct searches. It is also shown that the strong first-order phase transition, which is required for the electroweak baryogenesis, can be realized in our model. In addition, the scalar potential can in principle contain CP-violating phases, which can also be utilized for the baryogenesis. Therefore, three problems in the standard model, namely absence of neutrino masses, the dark matter candidate, and the mechanism to generate baryon asymmetry of the Universe, may be simultaneously resolved at the TeV-scale. Phenomenology of this model is also discussed briefly.
We describe a unique gravitational wave signature for a class of models with a vast hierarchy between the symmetry breaking scales. The unusual shape of the signal is a result of the overlapping contributions to the stochastic gravitational wave back ground from cosmic strings produced at a high scale and a cosmological phase transition at a low scale. We apply this idea to a simple model with gauged baryon and lepton number, in which the high-scale breaking of lepton number is motivated by the seesaw mechanism for the neutrinos, whereas the low scale of baryon number breaking is required by the observed dark matter relic density. The novel signature can be searched for in upcoming gravitational wave experiments.
We explore the generation of the baryon asymmetry in an extension of the Standard Model where the lepton number is promoted to a $U(1)_ell$ gauge symmetry with an associated $Z^prime$ gauge boson. This is based on a novel electroweak baryogenesis mec hanism first proposed by us in Ref. cite{Carena:2018cjh}. Extra fermionic degrees of freedom - including a fermionic dark matter $chi$ - are introduced in the dark sector for anomaly cancellation. Lepton number is spontaneously broken at high scale and the effective theory, containing the Standard Model, the $Z^prime$, the fermionic dark matter, and an additional complex scalar field $S$, violates CP in the dark sector. The complex scalar field couples to the Higgs portal and is essential in enabling a strong first order phase transition. Dark CP violation is diffused in front of the bubble walls and creates a chiral asymmetry for $chi$, which in turn creates a chemical potential for the Standard Model leptons. Weak sphalerons are then in charge of transforming the net lepton charge asymmetry into net baryon number. We explore the model phenomenology related to the leptophilic $Z^prime$, the dark matter candidate, the Higgs boson and the additional scalar, as well as implications for electric dipole moments. We also discuss the case when baryon number $U(1)_B$ is promoted to a gauge symmetry, and discuss electroweak baryogenesis and its corresponding phenomenology.
A simple TeV scale model for baryon and lepton number violation is presented, where neutrino mass arises via a one-loop radiative seesaw effect and B-violation obeys $Delta B=2$ selection rule. The stability of proton is connected to the neutrino mas s generation. Matter-antimatter asymmetry is generated in this model via resonant baryogenesis mechanism.
This report, prepared for the Community Planning Study - Snowmass 2013 - summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Prese nt and future nucleon decay search experiments using large underground detectors, as well as planned neutron-antineutron oscillation search experiments with free neutron beams are highlighted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا