ترغب بنشر مسار تعليمي؟ اضغط هنا

Invariant-mass spectroscopy of $^{18}$Ne, $^{16}$O, and $^{10}$C excited states formed in neutron transfer reactions

47   0   0.0 ( 0 )
 نشر من قبل Robert Charity
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutron transfer reactions with fast secondary beams of $^{17}$Ne, $^{15}$O, and $^9$C have been studied with the HiRA and CAESAR arrays. Excited states of $^{18}$Ne, $^{16}$O, and $^{10}$C in the continuum have been identified using invariant-mass spectroscopy. The best experimental resolution of these states is achieved by selecting events where the decay fragments are emitted transverse to the beam direction. We have confirmed a number of spin assignments made in previous works for the negative-parity states of $^{18}$Ne. In addition we have found new higher-lying excited states in $^{16}$O and $^{18}$Ne, some of which fission into two ground-state $^8$Be fragments. Finally for $^{10}$C, a new excited state was observed. These transfer reactions were found to leave the remnant of the $^9$Be target nuclei at very high excitation energies and maybe associated with the pickup of a deeply-bound $^9$Be neutron.



قيم البحث

اقرأ أيضاً

Excited states in $^{14}$O have been investigated both experimentally and theoretically. Experimentally, these states were produced via neutron-knockout reactions with a fast $^{15}$O beam and the invariant-mass technique was employed to isolate the 1$p$ and 2$p$ decay channels and determine their branching ratios. The spectrum of excited states was also calculated with the Shell Model Embedded in the Continuum that treats bound and scattering states in a unified model. By comparing energies, widths and decay branching patterns, spin and parity assignments for all experimentally observed levels below 8 MeV are made. This includes the location of the second 2$^{+}$ state that we find is in near degeneracy with the third 0$^{+}$ state. An interesting case of sequential 2$p$ decay through a pair of degenerate $^{13}$N excited states with opposite parities was found where the interference between the two sequential decay pathways produces an unusual relative-angle distribution between the emitted protons.
Background The nuclear structure of the cluster bands in $^{20}$Ne presents a challenge for different theoretical approaches. It is especially difficult to explain the broad 0$^+$, 2$^+$ states at 9 MeV excitation energy. Simultaneously, it is impo rtant to obtain more reliable experimental data for these levels in order to quantitatively assess the theoretical framework. Purpose To obtain new data on $^{20}$Ne $alpha$ cluster structure. Method Thick target inverse kinematics technique was used to study the $^{16}$O+$alpha$ resonance elastic scattering and the data were analyzed using an textit{R} matrix approach. The $^{20}$Ne spectrum, the cluster and nucleon spectroscopic factors were calculated using cluster-nucleon configuration interaction model (CNCIM). Results We determined the parameters of the broad resonances in textsuperscript{20}Ne: 0$^+$ level at 8.77 $pm$ 0.150 MeV with a width of 750 (+500/-220) keV; 2$^+$ level at 8.75 $pm$ 0.100 MeV with the width of 695 $pm$ 120 keV; the width of 9.48 MeV level of 65 $pm$ 20 keV and showed that 9.19 MeV, 2$^+$ level (if exists) should have width $leq$ 10 keV. The detailed comparison of the theoretical CNCIM predictions with the experimental data on cluster states was made. Conclusions Our experimental results by the TTIK method generally confirm the adopted data on $alpha$ cluster levels in $^{20}$Ne. The CNCIM gives a good description of the $^{20}$Ne positive parity states up to an excitation energy of $sim$ 7 MeV, predicting reasonably well the excitation energy of the states and their cluster and single particle properties. At higher excitations, the qualitative disagreement with the experimentally observed structure is evident, especially for broad resonances.
Background: Recently, a systematic exploration of two-neutron transfer induced by the ($^{18}$O, $^{16}$O) reaction on different targets has been performed. The high resolution data have been collected at the MAGNEX magnetic spectrometer of the INFN- LNS laboratory in Catania and analyzed with the coupled reaction channel (CRC) approach. The simultaneous and sequential transfers of the two neutrons have been considered under the same theoretical framework without the need of adjustable factors in the calculations. Purpose: A detailed analysis of the one-neutron transfer cross sections is important to study the sequential two-neutron transfer. Here, we examine the ($^{18}$O, $^{17}$O) reaction on $^{16}$O, $^{28}$Si and $^{64}$Ni targets. These even-even nuclei allow for investigation of one-neutron transfer in distinct nuclear shell spaces. Method: The MAGNEX spectrometer was used to measure mass spectra of ejectiles and extract differential cross sections of one-neutron transfer to low-lying states. We adopted the same CRC formalism used in the sequential two-neutron transfer, including relevant channels and using spectroscopic amplitudes obtained from shell model calculations. We also compare with one-step distorted wave Born approximation (DWBA). Results: For the $^{18}$O + $^{16}$O and the $^{18}$O + $^{28}$O systems we used two interactions in the shell model. The experimental angular distributions are reasonably well reproduced by the CRC calculations. In the $^{18}$O + $^{64}$Ni system, we considered only one interaction and the theoretical curve describes the shape and order of magnitude observed in the experimental data. Conclusions: Comparisons between experimental, DWBA and CRC angle-integrated cross sections suggest that excitations before or after the transfer of neutron is relevant in the $^{18}$O + $^{16}$O and $^{18}$O + $^{64}$Ni systems.
Classical novae result from thermonuclear explosions producing several $gamma$-ray emitters which are prime targets for satellites observing in the MeV range. The early 511 keV gamma-ray emission depends critically on the $^{18}$F(p,$alpha$)$^{15}$O reaction rate which, despite many experimental and theoretical efforts, still remains uncertain. One of the main uncertainties in the $^{18}$F(p,$alpha$)$^{15}$O reaction rate is the contribution in the Gamow window of interference between sub-threshold $^{19}$Ne states and known broad states at higher energies. Therefore the goal of this work is to clarify the existence and the nature of these sub-threshold states. States in the $^{19}$Ne compound nucleus were studied at the Tandem-ALTO facility using the $^{19}$F($^3$He,t)$^{19}$Ne charge exchange reaction. Tritons were detected with an Enge Split-pole spectrometer while decaying protons or $alpha$-particles from unbound $^{19}$Ne states were collected, in coincidence, with a double-sided silicon strip detector array. Angular correlations were extracted and constraints on the spin and parity of decaying states established. The coincidence yield at $E_x$ = 6.29 MeV was observed to be high spin, supporting the conclusion that it is indeed a doublet consisting of high spin and low spin components. Evidence for a broad, low spin state was observed around 6 MeV. Branching ratios were extracted for several states above the proton threshold and were found to be consistent with the literature. R-matrix calculations show the relative contribution of sub-threshold states to the astrophysically important energy region above the proton threshold. The levels schemes of $^{19}$Ne and $^{19}$F are still not sufficiently well known and further studies of the analogue assignments are needed. The tentative broad state at 6 MeV may only play a role if the reduced proton width is large.
38 - Vitaliano Ciulli 1999
Recent results on the spectroscopy of excited b and c states are presented. In particular, these include the first observation of the D_1 (light quark spin j=1/2) resonance, searches for radially excited D* and observations of orbitally excited B*_J states. The current experimental status on excited charmed baryons is also briefly reviewed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا