ترغب بنشر مسار تعليمي؟ اضغط هنا

A unified numerical approach to semiconductor-superconductor heterostructures

205   0   0.0 ( 0 )
 نشر من قبل Georg Winkler
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a unified numerical approach for modeling semiconductor-superconductor heterostructures. Our approach takes into account on equal footing important key ingredients: proximity-induced superconductivity, orbital and Zeeman effect of an applied magnetic field, spin-orbit coupling as well as the electrostatic environment. As a model system, we consider indium arsenide (InAs) nanowires with epitaxial aluminum (Al) shell and demonstrate qualitative agreement of the obtained results with the existing experimental data. Finally, we characterize the topological superconducting phase emerging in a finite magnetic field and calculate the corresponding topological phase diagram.



قيم البحث

اقرأ أيضاً

Realizing topological superconductivity and Majorana zero modes in the laboratory is one of the major goals in condensed matter physics. We review the current status of this rapidly-developing field, focusing on semiconductor-superconductor proposals for topological superconductivity. Material science progress and robust signatures of Majorana zero modes in recent experiments are discussed. After a brief introduction to the subject, we outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation in these systems.
365 - Jay Sau , Sumanta Tewari 2021
We present a pedagogical review of topological superconductivity and its consequences in spin-orbit coupled semiconductor/superconductor heterostructures. We start by reviewing the historical origins of the notions of Dirac and Majorana fermions in particle physics and discuss how lower dimension
We study a new effect of Cooper-pair-based two-photon gain in semiconductor-superconductor structures, showing broadband enhancement of ultrafast two-photon amplification. We further show that with the superconducting enhancement, at moderately high seed intensities the two-photon gain contribution approaches that of the one-photon gain. A full quantum-optical model of singly- and fully-stimulated two-photon emission is developed. Our results provide new insights on nonlinear light-matter interaction in the superconducting state, including the possibility of coherent control in two-photon semiconductor-superconductor devices. The theoretically demonstrated effects can have important implications in optoelectronics and in coherent control applications.
In recent years, signatures of Majorana fermions have been demonstrated experimentally in several superconducting systems. However, finding systems which can be scaled up to accommodate a large number of Majorana fermions for quantum computation rema ins a major challenge for experimentalists. In a recent work [1], signatures of a pair of Majorana zero modes (MZMs) were found in a new experimental platform formed by EuS islands deposited on top of a gold wire which were made superconducting through proximity coupling to a superconductor. In this work, we provide a theoretical explanation for how MZMs can be formed in EuS/Au/superconductor heterostructures. This simple experimental setup provides a new route for realizing a large number of Majorana fermions for quantum computations.
We propose a highly efficient numerical method to describe inhomogeneous superconductivity by using the kernel polynomial method in order to calculate the Greens functions of a superconductor. Broken translational invariance of any type (impurities, surfaces or magnetic fields) can be easily incorporated. We show that limitations due to system size can be easily circumvented and therefore this method opens the way for the study of scenarios and/or geometries that were unaccessible before. The proposed method is highly efficient and amenable to large scale parallel computation. Although we only use it in the context of superconductivity, it is applicable to other inhomogeneous mean-field theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا