ﻻ يوجد ملخص باللغة العربية
We develop a unified numerical approach for modeling semiconductor-superconductor heterostructures. Our approach takes into account on equal footing important key ingredients: proximity-induced superconductivity, orbital and Zeeman effect of an applied magnetic field, spin-orbit coupling as well as the electrostatic environment. As a model system, we consider indium arsenide (InAs) nanowires with epitaxial aluminum (Al) shell and demonstrate qualitative agreement of the obtained results with the existing experimental data. Finally, we characterize the topological superconducting phase emerging in a finite magnetic field and calculate the corresponding topological phase diagram.
Realizing topological superconductivity and Majorana zero modes in the laboratory is one of the major goals in condensed matter physics. We review the current status of this rapidly-developing field, focusing on semiconductor-superconductor proposals
We present a pedagogical review of topological superconductivity and its consequences in spin-orbit coupled semiconductor/superconductor heterostructures. We start by reviewing the historical origins of the notions of Dirac and Majorana fermions in particle physics and discuss how lower dimension
We study a new effect of Cooper-pair-based two-photon gain in semiconductor-superconductor structures, showing broadband enhancement of ultrafast two-photon amplification. We further show that with the superconducting enhancement, at moderately high
In recent years, signatures of Majorana fermions have been demonstrated experimentally in several superconducting systems. However, finding systems which can be scaled up to accommodate a large number of Majorana fermions for quantum computation rema
We propose a highly efficient numerical method to describe inhomogeneous superconductivity by using the kernel polynomial method in order to calculate the Greens functions of a superconductor. Broken translational invariance of any type (impurities,