ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial Variable Selection and An Application to Virginia Lyme Disease Emergence

154   0   0.0 ( 0 )
 نشر من قبل Yili Hong
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Lyme disease is an infectious disease that is caused by a bacterium called Borrelia burgdorferi sensu stricto. In the United States, Lyme disease is one of the most common infectious diseases. The major endemic areas of the disease are New England, Mid-Atlantic, East-North Central, South Atlantic, and West North-Central. Virginia is on the front-line of the diseases diffusion from the northeast to the south. One of the research objectives for the infectious disease community is to identify environmental and economic variables that are associated with the emergence of Lyme disease. In this paper, we use a spatial Poisson regression model to link the spatial disease counts and environmental and economic variables, and develop a spatial variable selection procedure to effectively identify important factors by using an adaptive elastic net penalty. The proposed methods can automatically select important covariates, while adjusting for possible spatial correlations of disease counts. The performance of the proposed method is studied and compared with existing methods via a comprehensive simulation study. We apply the developed variable selection methods to the Virginia Lyme disease data and identify important variables that are new to the literature. Supplementary materials for this paper are available online.

قيم البحث

اقرأ أيضاً

Lyme disease is a rapidly growing illness that remains poorly understood within the medical community. Critical questions about when and why patients respond to treatment or stay ill, what kinds of treatments are effective, and even how to properly d iagnose the disease remain largely unanswered. We investigate these questions by applying machine learning techniques to a large scale Lyme disease patient registry, MyLymeData, developed by the nonprofit LymeDisease.org. We apply various machine learning methods in order to measure the effect of individual features in predicting participants answers to the Global Rating of Change (GROC) survey questions that assess the self-reported degree to which their condition improved, worsened, or remained unchanged following antibiotic treatment. We use basic linear regression, support vector machines, neural networks, entropy-based decision tree models, and $k$-nearest neighbors approaches. We first analyze the general performance of the model and then identify the most important features for predicting participant answers to GROC. After we identify the key features, we separate them from the dataset and demonstrate the effectiveness of these features at identifying GROC. In doing so, we highlight possible directions for future study both mathematically and clinically.
A rapid growth in spatial open datasets has led to a huge demand for regression approaches accommodating spatial and non-spatial effects in big data. Regression model selection is particularly important to stably estimate flexible regression models. However, conventional methods can be slow for large samples. Hence, we develop a fast and practical model-selection approach for spatial regression models, focusing on the selection of coefficient types that include constant, spatially varying, and non-spatially varying coefficients. A pre-processing approach, which replaces data matrices with small inner products through dimension reduction dramatically accelerates the computation speed of model selection. Numerical experiments show that our approach selects the model accurately and computationally efficiently, highlighting the importance of model selection in the spatial regression context. Then, the present approach is applied to open data to investigate local factors affecting crime in Japan. The results suggest that our approach is useful not only for selecting factors influencing crime risk but also for predicting crime events. This scalable model selection will be key to appropriately specifying flexible and large-scale spatial regression models in the era of big data. The developed model selection approach was implemented in the R package spmoran.
Microorganisms play critical roles in human health and disease. It is well known that microbes live in diverse communities in which they interact synergistically or antagonistically. Thus for estimating microbial associations with clinical covariates , multivariate statistical models are preferred. Multivariate models allow one to estimate and exploit complex interdependencies among multiple taxa, yielding more powerful tests of exposure or treatment effects than application of taxon-specific univariate analyses. In addition, the analysis of microbial count data requires special attention because data commonly exhibit zero inflation. To meet these needs, we developed a Bayesian variable selection model for multivariate count data with excess zeros that incorporates information on the covariance structure of the outcomes (counts for multiple taxa), while estimating associations with the mean levels of these outcomes. Although there has been a great deal of effort in zero-inflated models for longitudinal data, little attention has been given to high-dimensional multivariate zero-inflated data modeled via a general correlation structure. Through simulation, we compared performance of the proposed method to that of existing univariate approaches, for both the binary and count parts of the model. When outcomes were correlated the proposed variable selection method maintained type I error while boosting the ability to identify true associations in the binary component of the model. For the count part of the model, in some scenarios the the univariate method had higher power than the multivariate approach. This higher power was at a cost of a highly inflated false discovery rate not observed with the proposed multivariate method. We applied the approach to oral microbiome data from the Pediatric HIV/AIDS Cohort Oral Health Study and identified five species (of 44) associated with HIV infection.
Competing risk analysis considers event times due to multiple causes, or of more than one event types. Commonly used regression models for such data include 1) cause-specific hazards model, which focuses on modeling one type of event while acknowledg ing other event types simultaneously; and 2) subdistribution hazards model, which links the covariate effects directly to the cumulative incidence function. Their use and in particular statistical properties in the presence of high-dimensional predictors are largely unexplored. Motivated by an analysis using the linked SEER-Medicare database for the purposes of predicting cancer versus non-cancer mortality for patients with prostate cancer, we study the accuracy of prediction and variable selection of existing statistical learning methods under both models using extensive simulation experiments, including different approaches to choosing penalty parameters in each method. We then apply the optimal approaches to the analysis of the SEER-Medicare data.
We compare two major approaches to variable selection in clustering: model selection and regularization. Based on previous results, we select the method of Maugis et al. (2009b), which modified the method of Raftery and Dean (2006), as a current stat e of the art model selection method. We select the method of Witten and Tibshirani (2010) as a current state of the art regularization method. We compared the methods by simulation in terms of their accuracy in both classification and variable selection. In the first simulation experiment all the variables were conditionally independent given cluster membership. We found that variable selection (of either kind) yielded substantial gains in classification accuracy when the clusters were well separated, but few gains when the clusters were close together. We found that the two variable selection methods had comparable classification accuracy, but that the model selection approach had substantially better accuracy in selecting variables. In our second simulation experiment, there were correlations among the variables given the cluster memberships. We found that the model selection approach was substantially more accurate in terms of both classification and variable selection than the regularization approach, and that both gave more accurate classifications than $K$-means without variable selection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا