ﻻ يوجد ملخص باللغة العربية
We evaluate the density matrix of an arbitrary quantum mechanical system in terms of the quantities pertinent to the solution of the time-dependent density functional theory (TDDFT) problem. Our theory utilizes the adiabatic connection perturbation method of G{o}rling and Levy, from which the expansion of the many-body density matrix in powers of the coupling constant $lambda$ naturally arises. We then find the reduced density matrix $rho_lambda({bf r},{bf r},t)$, which, by construction, has the $lambda$-independent diagonal elements $rho_lambda({bf r},{bf r},t)=n({bf r},t)$, $n({bf r},t)$ being the particle density. The off-diagonal elements of $rho_lambda({bf r},{bf r},t)$ contribute importantly to the processes, which cannot be treated via the density, directly or by the use of the known TDDFT functionals. Of those, we consider the momentum-resolved photoemission, doing this to the first order in $lambda$, i.e., on the level of the exact exchange theory. In illustrative calculations of photoemission from the quasi-2D electron gas and isolated atoms, we find quantitatively strong and conceptually far-reaching differences with the independent-particle Fermis golden rule formula.
We present an textit{ab initio} theory for superconductors, based on a unique mapping between the statistical density operator at equilibrium, on the one hand, and the corresponding one-body reduced density matrix $gamma$ and the anomalous density $c
We propose a scheme to extract the many-body spectral function of an interacting many-electron system from an equilibrium density functional theory (DFT) calculation. To this end we devise an ideal STM-like setup and employ the recently proposed stea
We propose a computationally efficient approach to the nonadiabatic time-dependent density functional theory (TDDFT) which is based on a representation of the frequency-dependent exchange correlation kernel as a response of a set of damped oscillator
Based on a generalization of Hohenberg-Kohns theorem, we propose a ground state theory for bosonic quantum systems. Since it involves the one-particle reduced density matrix $gamma$ as a natural variable but still recovers quantum correlations in an
In this work we explore the performance of approximations to electron correlation in reduced density-matrix functional theory (RDMFT) and of approximations to the observables calculated within this theory. Our analysis focuses on the calculation of t